精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,PD⊥AC于点D,且DC=2AD=2,E为PC上一点,PE:EC=1:2,
(Ⅰ)求证:DE∥平面PAB;
(Ⅱ)求证:平面PDB⊥平面ABC;
(Ⅲ) 若PD=2,AB=
3
,∠ABC=60°,求三棱锥P-ABC的体积.
考点:平面与平面垂直的判定,棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:计算题,空间向量及应用
分析:(Ⅰ)利用线段成比例,直线平行;
(Ⅱ)PD⊥平面ABC,从而平面PAC⊥平面ABC;(Ⅲ)判断底面△ABC为直角三角形,或用余弦定理得AC长,求得△ABC的面积,从而由三棱锥体积公式得到答案.
解答: 解:(Ⅰ)∵
PE
EC
=
AD
DC
=2 , ∴DE∥PA
,…(2分)∵DE?平面PAB,PA?平面PAB,∴DE∥平面PAB;…(3分)
(Ⅱ)因为平面PAC⊥平面ABC,
且平面PAC∩平面ABC=AC,PD?平面PAC,PD⊥AC,
所以PD⊥平面ABC,…(6分)
又PD?平面PDB,
所以平面PDB⊥平面ABC.…(7分)
(Ⅲ)由(Ⅱ)可知PD⊥平面ABC. 
法一:△ABC中,AB=
3
,∠ABC=60°,AC=3,
由正弦定理
AB
sin∠ACB
=
AC
sin∠ABC
,得sin∠ACB=
1
2

因为AC>AB,所以∠ACB<∠ABC,则∠ACB=
π
6
,因此∠CAB=
π
2
,…(8分)
△ABC的面积S△ABC=
1
2
AC•AB=
1
2
•3•
3
=
3
3
2
.       …(10分)
所以三棱锥P-ABC的体积VP-ABC=
1
3
×S△ABC×PD
=
3
.   …(12分)
法二:△ABC中,AB=
3
,∠ABC=60°AC=3,由余弦定理得:AC2=AB2+BC2-2AB•BC•cos60°,
所以BC2-
3
BC-6=0,
所以BC=2
3
或-
3
(舍去).                    …(8分)
△ABC的面积S△ABC=
1
2
AB•BC•sin60°=
1
2
3
•2
3
3
2
=
3
3
2
.  …(10分)
所以三棱锥P-ABC的体积VP-ABC=
1
3
×S△ABC×PD
=
3
.       …(12分)
点评:本题考查直线与平面平行的证明,考查平面与平面垂直的证明,考查三棱锥体积的求法.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入的a,b,k分别为0,1,2,则输出的M=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱柱ABCD-A1B1C1D1中,M是DD1的中点.
(Ⅰ)求证:BD1∥平面AMC;
(Ⅱ)求证:AC⊥BD1
(Ⅲ)在线段BB1上是否存在点P,当
BP
BB1
=λ时,平面A1PC1∥平面AMC?若存在,求出λ的值并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1
x=
1
2
cosα
y=3sinα
(α为参数),曲线C2:ρsin(θ+
π
4
)=
2
,将C1的横坐标伸长为原来的2倍,纵坐标缩短为原来的
1
3
得到曲线C3
(Ⅰ)求曲线C3的普通方程,曲线C2的直角坐标方程;
(Ⅱ)若点P为曲线C3上的任意一点,Q为曲线C2上的任意一点,求线段|PQ|的最小值,并求此时的P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为菱形,点F为侧棱PC上一点.
(1)若PF=FC,求证:PA∥平面BDF;
(2)若BF⊥PC,求证:平面BDF⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(1,
2
2
)和(
2
2
3
2
),其中e为椭圆的离心率.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设Q(x0,y0)(x0y0≠0)为椭圆C上一点,取点A(0,
2
),E(x0,0),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于原点的对称点.证明:直线QG与椭圆C只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB⊥AD,AC与BD交于点O,PA=3,AD=2,AB=2
3
,BC=6.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)求直线PO与平面PAB所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直三棱柱ABC-A1B1C1中,AB⊥BC,BC=
2
,BB1=2,AC1与A1C交于一点P,延长B1B到D,使得BD=AB,连接DC,DA,得到如图所示几何体.
(Ⅰ)若AB=1,求证:BP∥平面ACD,
(Ⅱ)若直线CA1与平面BCC1B1所成的角为30°,求二面角D-AC-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x>0时,求证:x3≥3x-2.

查看答案和解析>>

同步练习册答案