精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=ax2+bx-1(a,b∈R且a>0 )有两个零点,其中一个零点在区间(1,2)内,则$\frac{b}{a+1}$的取值范围是(0,2).

分析 由题意知,一个根在区间(1,2)内,得关于a,b的等式,再利用线性规划的方法求出$\frac{b}{a+1}$的取值范围即可.

解答 解:设f(x)=ax2+bx-1=0,由题意得,f(1)•f(2)<0,
∴(a+b-1)(4a+2b-1)<0.且a>0.
即$\left\{\begin{array}{l}{a+b-1<0}\\{4a+2b-1>0}\\{a>0}\end{array}\right.$或$\left\{\begin{array}{l}{a+b-1>0}\\{4a+2b-1<0}\\{a>0}\end{array}\right.$,(不合题意舍去)
视a,b为变量,作出可行域如图.

则$\frac{b}{a+1}$的几何意义表示平面区域内的点与(-1,0)的所在直线的斜率,
结合图象直线过(-1,0),(0,2)时斜率最大,最大值是2,
最小值是0,
故答案为:(0,2).

点评 本题考查了线性规划的运用,线性规划为研究函数的最值或最优解提供了新的方法,借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知p:关于x的不等式x2+2ax-a≠0的解集是R,q:-1<a<0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图正方体ABCD-A1B1C1D1,棱长为1,P为BC中点,Q为线段CC1上的动点,过A、P、Q的平面截该正方体所得的截面记为S,则下列命题正确的是(  )
①当0<CQ<$\frac{1}{2}$时,S为四边形;
②当CQ=$\frac{1}{2}$时,S为等腰梯形;
③当CQ=$\frac{3}{4}$时,S与C1D1交点R满足C1R1=$\frac{1}{3}$;
④当$\frac{3}{4}$<CQ<1时,S为六边形;
⑤当CQ=1时,S的面积为$\frac{\sqrt{6}}{2}$.
A.①③④B.②④⑤C.①②④D.①②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-1|+|x+2|
(Ⅰ) 解关于x的不等式f(x)≥4;
(Ⅱ) 若关于x的不等式f(x)≥c恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设ξ表示所抽取的3名同学中得分在[80,90)的学生个数,求事件“ξ=2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)在R上存在导数f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(2-m)+f(-m)+2m-2≥0,则实数m的取值范围为(  )
A.[-1,1]B.[1,+∞)C.[2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|1<x<3},B={x|0<x<2},则A∩B=(  )
A.{x|0<x<3}B.{x|1<x<3}C.{x|0<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用辗转相除法求204,168,186三个数的最大公约数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=x+\frac{a}{x}+2$的值域为(-∞,0]∪[4,+∞),则a的值是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

同步练习册答案