精英家教网 > 高中数学 > 题目详情

现有一枚质地均匀的骰子,连续投掷两次,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是7的结果有多少种?
(3)向上的点数之和是7的概率是多少?

一枚质地均匀的骰子,连续投掷两次的不同情况有36种,其中向上的点数之和为7 的结果有6种;向上的点数之和为7 的概率为

解析试题分析:(1)一枚质地均匀的骰子,连续投掷两次的不同情况如下:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),
共有36种不同结果。
(2)其中向上的点数之和为7 的结果有:
(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)共6种
(3)向上的点数之和为7 的概率为
答:一枚质地均匀的骰子,连续投掷两次的不同情况有36种,其中向上的点数之和为7 的结果有6种;向上的点数之和为7 的概率为
考点:古典概型概率的计算
点评:中档题,古典概型概率的计算问题,关键是计算事件数。为防止重复或遗漏,常常利用“树图法”或“坐标法”。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某社团组织名志愿者利用周末和节假日参加社会公益活动,活动内容是:1、到各社区宣传慰问,倡导文明新风;2、到指定的医院、福利院做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:

 
宣传慰问
义工
总计
20至40岁
11
16
27
大于40岁
15
8
23
总计
26
24
50
(1) 分层抽样方法在做义工的志愿者中随机抽取6名,年龄大于40岁的应该抽取几名?
(2) 上述抽取的6名志愿者中任取2名,求选到的志愿者年龄大于40岁的人数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:

分组(重量)




频数(个)
5
10
20
15
(1) 根据频数分布表计算苹果的重量在的频率;
(2) 用分层抽样的方法从重量在的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某车间共有名工人,随机抽取名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.

(Ⅰ) 根据茎叶图计算样本均值;
(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间名工人中有几名优秀工人;
(Ⅲ) 从该车间名工人中,任取人,求恰有名优秀工人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2013年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别
PM2.5浓度
(微克/立方米)
频数(天)
频率
 第一组
(0,25]
5
0.25
第二组
(25,50]
10
0.5
第三组
(50,75]
3
0.15
第四组
(75,100)
2
0.1
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在一个口袋中装有12个大小相同的黑球、白球和红球。已知从袋中任意摸出2个球,至少得到一个黑球的概率是
求:(1)袋中黑球的个数;
(2)从袋中任意摸出3个球,至少得到2个黑球的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》。其中规定:居民区的PM2.5(大气中直径小于或等于2.5微米的颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米。某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别
PM2.5浓度
(微克/立方米
频数(天)
频率
第一组
(0,25]
5
0.25
第二组
(25,50]
10
0.5
第三组
(50,75]
3
0.15
第四组
(75,100)
2
0.1
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据用样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。
(1)摸出的3个球为白球的概率是多少?  
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

高三年级有3名男生和1名女生为了报某所大学,事先进行了多方详细咨询,并根据自己的高考成绩情况,最终估计这3名男生报此所大学的概率都是,这1名女生报此所大学的概率是.且这4人报此所大学互不影响。
(Ⅰ)求上述4名学生中报这所大学的人数中男生和女生人数相等的概率;
(Ⅱ)在报考某所大学的上述4名学生中,记为报这所大学的男生和女生人数的和,试求的分布列和数学期望.

查看答案和解析>>

同步练习册答案