精英家教网 > 高中数学 > 题目详情
19.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2的直线交双曲线于A,B两点,连结AF1,BF1,若|AB|=|BF1|,且∠ABF1=90°,则双曲线的离心率为$\sqrt{5-2\sqrt{2}}$.

分析 设|BF1|=n,由题意可得|AB|=n,|AF1|=$\sqrt{2}$n,运用双曲线的定义和勾股定理,化简整理,由离心率公式计算即可得到所求值.

解答 解:设|BF1|=n,由|AB|=|BF1|,且∠ABF1=90°,可得
|AB|=n,|AF1|=$\sqrt{2}$n,
由双曲线的定义可得|BF1|-|BF2|=2a,
即有|BF2|=n-2a,
又|AF1|-|AF2|=2a,可得|AF2|=$\sqrt{2}$n-2a,
由|AB|=($\sqrt{2}$+1)n-4a=n,
解得n=2$\sqrt{2}$a,
在△F1F2B中,由|BF1|2+|BF2|2=|F1F2|2
即为(2$\sqrt{2}$a)2+(2$\sqrt{2}$-2)2a2=4c2
化为c2=(5-2$\sqrt{2}$)a2
可得e=$\frac{c}{a}$=$\sqrt{5-2\sqrt{2}}$,
故答案为:$\sqrt{5-2\sqrt{2}}$,

点评 本题考查双曲线的离心率的求法,运用双曲线的定义和勾股定理是解决本题的关键.,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图是某几何体的三视图,其中正视图是正方形,侧视图是矩形,俯视图是半径为2的半圆,则该几何体的表面积等于16+12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆C:x2+y2-6x-8y+24=0和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得$\overrightarrow{AP}•\overrightarrow{BP}=0$,则m的最大值与最小值之差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.棱长都相等的三棱锥P-ABC,平面α经过点P且与平面ABC平行,平面β经过BC且与棱PA平行,α∩平面PBC=m,α∩β=n,则(  )
A.m⊥nB.m,n成60°角C.m∥nD.m,n成30°角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工180人,老年职工90人.为了解职工身体状态,现采用分层抽样的方法进行调查,若抽取的样本中有青年职工32人,则该样本中的老年职工人数为(  )
A.9B.18C.27D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数 f(x)的导数为 f'(x),且满足关系式 f(x)=x3•$\int_0^2{xdx+{x^2}f'(1)+3x}$,则 f'(2)的值等于-9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,三棱锥P-ABC中,PA⊥平面ABC,PA=AB=1,BC=$\sqrt{3}$,AC=2.
(1)求证:BC⊥平面PAB;
(2)若AE⊥PB于点E,AF⊥PC于点F,求四棱锥A-BCFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知在△ABC中,a=4,b=3,C=60°,则△ABC的面积S=(  )
A.$6\sqrt{3}$B.6C.$3\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5,为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是C(x)=$\frac{120}{x+5}$(x≥0),记F为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)建立F关于x的函数关系式;
(2)当x为多少平方米时,F取得最小值?最小值是多少万元?

查看答案和解析>>

同步练习册答案