精英家教网 > 高中数学 > 题目详情
1.已知x,y满足不等式$\left\{\begin{array}{l}x-4y≤-3\\ 3x+5y≤25\\ x≥1\end{array}\right.$,则函数z=2x+y取得最大值是(  )
A.3B.$\frac{13}{2}$C.12D.23

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合求出最值即可.

解答 解:由约束条件作出可行域如图
由图可知,使目标函数z=2x+y取得最大值时过点B,
联立 $\left\{\begin{array}{l}{x-4y=-3}\\{3x+5y=25}\end{array}\right.$,解得 $\left\{\begin{array}{l}{x=5}\\{y=2}\end{array}\right.$,
故z的最大值是:z=12,
故选:C.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.一块边长为8cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O为底面ABCD的中心,E为棱SA的中点,则DE与SC所成角的正切值为$\frac{6\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,若|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式x2-2x+m>0在R上恒成立的必要不充分条件是(  )
A.m>2B.0<m<1C.m>0D.m>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若直线a∥平面α,直线b在平面α内,则直线a与b的位置关系为(  )
A.一定平行B.一定异面
C.一定相交D.可能平行、可能异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在函数y=xcosx,y=ex+x2,$y=lg\sqrt{{x^2}-2}$,y=xsinx偶函数的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数Z满足(2+i)•Z=3-i,则|Z|等于(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在凸四边形ABCD中,AB=1,BC=$\sqrt{3}$,AC⊥CD,AC=CD,当∠ABC变化时,对角线BD的最大值为$\sqrt{6}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了保护环境,实现城市绿化,某小区要在空地长方形ABCD上规划出一块长方形地面建造草坪CGPH,草坪一边落在CD上,一个顶点P在水池△AEF的边EF上,(如图,其中AB=200 m,BC=160m,AE=60m,AF=40m),设CG=xm,草坪的面积为f(x).
(1)求函数y=f(x)的解析式,并写出它的定义域;
(2)求草坪面积的最大值,井求出此时CG的长度.(精确到整数)

查看答案和解析>>

同步练习册答案