精英家教网 > 高中数学 > 题目详情
2.如图,已知P是以F1(-1,0)为圆心,以4为半径的圆上的动点,P与F2(1,0)所连线段的垂直平分线与线段PF1交于点M.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)已知点E坐标为(4,0),并且倾斜角为锐角的直线l经过点F2(1,0)并且与曲线C相交于A,B两点,
(ⅰ)求证:∠AEF2=∠BEF2
(ⅱ)若cos∠AEB=$\frac{7}{9}$,求直线l的方程.

分析 (Ⅰ)设M(x,y),M在线段PF2的垂直平分线上,|MP|=|MF2|,可得|MF1|+|MF2|=|MF1|+|MP|=4>|F1F2|.M的轨迹为以F1,F2为焦点的椭圆,设椭圆的方程$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,由题意可求得a、b的值,求得椭圆方程;
(Ⅱ)(ⅰ)设出直线AB的方程,将直线方程代入椭圆方程,得到关于x的一元二次方程,由韦达定理求得x1+x2及x1•x2,分别求得kAE及kBE,由kAE+kBE=0,即可求得∠AEF2=∠BEF2
(ⅱ)由cos∠AEB=$\frac{7}{9}$,求得tan∠AEB,由$\frac{y_1}{{{x_1}-4}}=-\frac{{\sqrt{2}}}{4}$,

解答 解:(Ⅰ)设M(x,y),则因为M在线段PF2的垂直平分线上,
所以|MP|=|MF2|,
所以|MF1|+|MF2|=|MF1|+|MP|=4>|F1F2|.
即M的轨迹为以F1,F2为焦点的椭圆,…(2分)
其长半轴为a=2,半焦距为c=1,
所以短半轴$b=\sqrt{{a^2}-{c^2}}=\sqrt{3}$.
所以C的方程是$\frac{x^2}{4}+\frac{y^2}{3}=1$.…(4分)
(Ⅱ)(ⅰ)证明:设A(x1,y1),B(x2,y2),直线AB的方程为y=k(x-1),
则$\left\{\begin{array}{l}3{x^2}+4{y^2}=12\\ y=k(x-1)\end{array}\right.\;⇒(3+4{k^2}){x^2}-8{k^2}x+4{k^2}-12=0$,
${x_1}+{x_2}=\frac{{8{k^2}}}{{3+4{k^2}}}$,${x_1}{x_2}=\frac{{4{k^2}-12}}{{3+4{k^2}}}$.
则${k_{AE}}=\frac{y_1}{{{x_1}-4}}$,${k_{BE}}=\frac{y_2}{{{x_2}-4}}$.…(6分)
所以${k_{AE}}+{k_{BE}}=\;\;\frac{y_1}{{{x_1}-4}}\;+\frac{y_2}{{{x_2}-4}}\;=\frac{{k({x_1}-1)}}{{{x_1}-4}}\;+\frac{{k({x_2}-1)}}{{{x_2}-4}}$,
=$\frac{{k({x_1}-1)({x_2}-4)+k({x_2}-1)({x_1}-4)}}{{({x_1}-4)({x_2}-4)}}=\;\;\frac{{k[2{x_1}{x_2}-5({x_1}+{x_2})+8]}}{{({x_1}-4)({x_2}-4)}}=0$.
即∠AEF2=∠BEF2.…(8分)
(ⅱ)因为$cos∠AEB=\frac{7}{9}$,
所以$tan∠AE{F_2}=tan∠BE{F_2}=\frac{{\sqrt{2}}}{4}$,不妨设点A在第一象限,
则$\frac{y_1}{{{x_1}-4}}=-\frac{{\sqrt{2}}}{4}$,$\frac{y_2}{{{x_2}-4}}=\frac{{\sqrt{2}}}{4}$,
所以$\frac{{{y_1}^2}}{{{{({x_1}-4)}^2}}}=\frac{1}{8}$,$\frac{{{y_2}^2}}{{{{({x_2}-4)}^2}}}\;=\frac{1}{8}$;
即$\left\{\begin{array}{l}{({x_1}-4)^2}=8{y_1}^2\\{({x_2}-4)^2}=8{y_2}^2\end{array}\right.$,$\left\{\begin{array}{l}{({x_1}-4)^2}=8•3(1-\frac{{{x_1}^2}}{4})\\{({x_2}-4)^2}=8•3(1-\frac{{{x_2}^2}}{4})\end{array}\right.$…(10分)
所以x1,x2是方程${(x-4)^2}=8•3(1-\frac{x^2}{4})$,
即方程7x2-8x-8=0的两个根,
所以${x_1}+{x_2}=\frac{8}{7}$,${x_1}{x_2}=-\frac{8}{7}$,
所以$\frac{{8{k^2}}}{{3+4{k^2}}}=\frac{8}{7}$,k2=1.又倾斜角为锐角,
所以k>0,所以直线AB的方程为y=x-1.…(12分)

点评 本题考查椭圆标准方程的求法、直线与椭圆的位置关系及其应用,韦达定理及弦长公式,考查转化思想及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.用a1a2…an表示一个n位数,其中a1,a2,…,an表示各个位上的数,若($\overline{{a}_{1}{a}_{2}…{a}_{k}}$+$\overline{{a}_{k+1}{a}_{k+2}…{a}_{n}}$)2=$\overline{{a}_{1}{a}_{2}…{a}_{k}{a}_{k+1}…{a}_{n}}$,则称正整数$\overline{{a}_{1}{a}_{2}…{a}_{k}}$+$\overline{{a}_{k+1}{a}_{k+2}…{a}_{n}}$为K数,如(8+1)2=81,(30+25)2=3025,即9和55都是K数,则下面四个命题:
①个位数的K数只有9;②45不是K数;③99是一个K数;④10n-1(n∈N*)是一个K数;
正确命题的序号为①.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=$\frac{3}{4}{e^{x+\frac{1}{2}}}$,g(x)=ax3-x2-x+b(a,b∈R,a≠0),g(x)的图象C在x=-$\frac{1}{2}$处的切线方程是y=$\frac{3}{4}x+\frac{9}{8}$.
(1)若求a,b的值,并证明:当x∈(-∞,2]时,g(x)的图象C上任意一点都在切线y=$\frac{3}{4}x+\frac{9}{8}$上或在其下方;
(2)求证:当x∈(-∞,2]时,f(x)≥g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四边形ABCD中,AB∥CD,∠ABD=30°,AB=2CD=2AD=2$\sqrt{3}$,DE⊥面ABCD,EF∥BD,且EF=$\frac{2}{3}$BD.
(1)求证:FB∥面ACE;
(2)若CF与面ABCD所成角的正切为$\frac{{\sqrt{2}}}{4}$,求三棱锥F-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a<b<0,则(  )
A.a2<abB.ab<b2C.a2<b2D.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{17π}{6}$B.$\frac{17π}{3}$C.D.$\frac{13π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,已知2B=A+C,b2=ac,则B-A=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=a-$\frac{1}{x}$-lnx,g(x)=ex-ex+1.
(Ⅰ)若a=2,求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)=0恰有一个解,求a的值;
(Ⅲ)若g(x)≥f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某大型企业人力资源部为了研究企业员工工作态度和对待企业改革态度的关系,经过调查得到如下列联表:
态度积极支持企业改革不太支持企业改革总计
工作积极544094
工作一般326395
总计86103189
根据列联表的独立性检验,能否在犯错误的概率不超过0.005的前提下认为工作态度与对待企业改革态度之间有关系?

查看答案和解析>>

同步练习册答案