【题目】在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=2,AA1=6.若E,F分别是棱BB1 , CC1上的点,且BE=B1E,C1F= CC1 , 则异面直线A1E与AF所成角的余弦值为( )
A.﹣
B.
C.﹣
D.
【答案】B
【解析】解:如图,取AB中点O,以O为原点,分别以OC,OA所在直线为x,y轴建立空间直角坐标系, ∵AB=2,AA1=6,BE=B1E,C1F= CC1 ,
∴A(0,1,0),F( ,0,4),A1(0,1,6),E(0,﹣1,3),
∴ , ,
∴cos< >= = .
∴异面直线A1E与AF所成角的余弦值为 .
故选:B.
【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.
科目:高中数学 来源: 题型:
【题目】已知a∈R,设命题p:指数函数y=ax(a>0且a≠1)在R上单调递增;命题q:函数y=ln(ax2﹣ax+1)的定义域为R,若“p且q”为假,“p或q”为真,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)的对称轴x=﹣2,f(x)的图象被x轴截得的弦长为2 ,且满足f(0)=1.
(1)求f(x)的解析式;
(2)若f(( )x)>k,对x∈[﹣1,1]恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O:x2+y2=4与x轴负半轴的交点为A,点P在直线l: x+y﹣a=0上,过点P作圆O的切线,切点为T.
(1)若a=8,切点T( ,﹣1),求直线AP的方程;
(2)若PA=2PT,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD= AD,若E、F分别为PC、BD的中点.
(Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:EF⊥平面PDC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M为棱PB的中点.
(1)证明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com