精英家教网 > 高中数学 > 题目详情
已知圆C:(x-4)2+(y-3)2=1和两点 A(-m,0),B(m,0)(m>0),若圆C上至少存在一点 P,使得∠APB=90°,则m的取值范围是.
考点:椭圆的简单性质
专题:平面向量及应用,直线与圆
分析:根据题意,得出圆C的圆心C与半径r,设点P(a,b)在圆C上,表示出
AP
BP

利用∠APB=90°,求出m2,根据|OP|表示的几何意义,得出m的取值范围.
解答: 解:∵圆C:(x-4)2+(y-3)2=1,
∴圆心C(4,3),半径r=1;
设点P(a,b)在圆C上,则
AP
=(a+m,b),
BP
=(a-m,b);
∵∠APB=90°,
AP
BP

∴(a+m)(a-m)+b2=0;
即m2=a2+b2
∴|OP|=
a2+b2

∴|OP|的最大值是|OC|+r=5+1=6,最小值是|OC|-r=5-1=4;
∴m的取值范围是[4,6].
点评:本题考查了平面向量的应用问题,也考查了直线与圆的应用问题,是综合性题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωxcosωx-
1
2
cos2ωx的周期为2π.
(1)求ω的值;
(2)设 A,B,C为锐角△A BC的三个内角,求f( B)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,M,N分别是棱A1D1、C1C中点,则异面直线A1D与MN所成角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线m和直线n所成的角的大小为50°,P为空间中任意一点,则过点P且与直线m和直线n所成的角都是25°的直线的条数为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x上两点A,B到焦点的距离之和为10,求线段AB中点到y轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图显示.
(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上网购物者人数成等差数列,求a,b的值;
 (2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,并在这5人中随机抽取3人进行回访,求此三人获得代金券总和为200元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线P:
x2
m-1
+
y2
6-m
=1(m≠1且m≠6).
(Ⅰ)指出曲线P表示的图形的形状;
(Ⅱ)当m=5时,过点M(1,0)的直线l与曲线P交于A,B两点.
①若
MA
=-2
MB
,求直线l的方程;
②求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=-x+1;当x>1时,f(x)=log2x
(1)在答题卡中的平面直角坐标系中直接画出函数y=f(x)在R上的草图;
(2)当x∈(-∞,-1)时,求满足方程f(x)+log4(-x)=6的x的值;
(3)求y=f(x)在[0,t](t>0)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:f(x)=
3
cos4x-2cos2(2x+
π
4
)+1,求最小正周期.

查看答案和解析>>

同步练习册答案