精英家教网 > 高中数学 > 题目详情
“无字证明”,就是将数学命题用简单、有创意而且易于理解的几何图形来呈现,请利用图1、图2中阴影部分的面积关系,写出该图所验证的一个三角恒等变换公式:
 

考点:进行简单的合情推理
专题:推理和证明
分析:左右图中大矩形的面积相等,左边的图中阴影部分的面积为 S1=sin(α+β),在右边的图中,阴影部分的面积 S2 等于2个阴影小矩形的面积之和,等于sinαcosβ+cosαsinβ.而面积 S2 还等于大矩形得面积S 减去2个小空白矩形的面积,再由2个图中空白部分的面积相等,可得S1 =S2 ,从而得出结论.
解答: 解:在左边的图中大矩形的面积S=(cosβ+cosα)(sinβ+sinα)
=sinβcosβ+cosβsinα+cosαsinα+sinβcosα+sinαcosα=sin(α+β)+sinβcosβ+sinαcosα.
用大矩形的面积S减去4个直角三角形的面积就等于阴影部分的面积 S1
空白部分的面积等于4个直角三角形的面积,即2×(
1
2
sinβcosβ+
1
2
sinαcosα)=sinβcosβ+sinαcosα.
故阴影部分的面积 S1 =S-sinβcosβ+sinαcosα=sin(α+β).
而在右边的图中阴影部分的面积 S2 等于2个阴影小矩形的面积之和,即S2=sinαcosβ+cosαsinβ.
在右边的图中大矩形的面积也等于S,S2等于大矩形得面积S 减去2个小空白矩形的面积,
而2个空白矩形的面积之和,即sinβcosβ+sinαcosα,
故左图中空白部分的面积等于右图中空白部分的面积.
故左右图中阴影部分的面积也相等,即 S1 =S2 ,故有sin(α+β)=sinαcosβ+cosαsinβ,
故答案为:sin(α+β)=sinαcosβ+cosαsinβ.
点评:本题主要考查三角函数的恒等式的证明,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
),
(1)若
m
n
=1,求cos(
3
-x)的值;
(2)记f(x)=
m
n
求使得f(x)取得最大值时,x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的公比q>1,且a1a4=8,a2+a3=6,则数列{an}的前n项和Sn=(  )
A、2n
B、2n-1
C、2n-1
D、2n-1-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)(x∈R)满足f(x+1)=f(x-1)且x∈[0,1]时f(x)=x,则函数g(x)=f(x)-log3|x|的零点个数共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3+log2x,x∈[1,16],若函数g(x)=[f(x)]2+2f(x2).
(1)求函数g(x)的定义域;
(2)求函数g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x2-4x+3
的定义域是(  )
A、x∈R
B、x∈(0,3)
C、x∈(1,3)
D、x∈(-∞,1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=10x+1,则方程f-1(x)=1-lg(x+2)的解x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinωxcosωx+
3
cos2ωx-
3
2
(ω>0)的最小正周期为π.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)试说明由正弦曲线y=sinx如何变换得到函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log2x,x>0
g(x),x<0
是偶函数,则f(-
1
4
)=(  )
A、2
B、
1
2
C、-2
D、-
1
2

查看答案和解析>>

同步练习册答案