精英家教网 > 高中数学 > 题目详情
18.微信是现代生活进行信息交流的重要工具,随机对使用微信的60人进行了统计,得到如下数据统计表,每天使用微信时间在两小时以上的人被定义为“微信达人”,不超过两小时的人被定义为“非微信达人”.已知“非微信达人”与“微信达人”人数比恰为3:2.
(Ⅰ)确定x,y,p,q的值,并补全频率分布直方图;
(Ⅱ)为进一步了解使用微信对自己的日常工作和生活是否有影响,从“非微信达人”和“微信达人”60人中用分层抽样的方法确定5人,若需从这5人中随机选取2人进行问卷调查,求选取的2人中恰有1人为“微信达人”的概率. 
使用微信时间
(单位:小时)
频数频率
(0,0.5]30.05
(0.5,1]xp
(1,1.5]90.15
(1.5,2]150.25
(2,2.5]180.30
(2.5,3]yq
合计601.00

分析 (Ⅰ)由“非微信达人”与“微信达人”人数比恰为3:2,结合频率分布列和频率分布直方图,列出方程,能求出x,y,p,q的值,并能补全频率分布直方图.
(Ⅱ)选出的5人中,“微信达人”有2人,分别记为m,n,“非微信达人”有3人,分别记为a,b,c,由此得用列举法能求出选取的2人中恰有1人为“微信达人”的概率.

解答 解:(Ⅰ)“非微信达人”与“微信达人”人数比恰为3:2,
所以$\frac{3+x+9+15}{18+y}=\frac{3}{2}$,又3+x+9+15+18+y=60,(2分)
解这个方程组得$\left\{\begin{array}{l}x=9\\ y=6\end{array}\right.$,从而可得$\left\{\begin{array}{l}p=0.15\\ q=0.10\end{array}\right.$.(4分)
补全频率分布直方图如图所示:(6分)

(Ⅱ)选出的5人中,“微信达人”有2人,分别记为m,n,
“非微信达人”有3人,分别记为a,b,c,(8分)
从中任选取2人的方法为:mn,ma,mb,mc,na,nb,nc,ab,ac,bc共有10种,
其中恰有1人为“微信达人”的方法为:ma,mb,mc,na,nb,nc有6种.(10分)
所以选取的2人中恰有1人为“微信达人”的概率$P=\frac{6}{10}=\frac{3}{5}$.(12分)
方法不一样,只要过程正确,答案准确给满分

点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式、列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=logax(a>0且a≠1),若f(x1x2…x2017)=8,则f(x12)+f(x22)+…+f(x20172)的值等于(  )
A.2loga8B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.检测600个某产品的质量(单位:g),得到的直方图中,前三组的长方形的高度成等差数列,后三组对应的长方形的高度成公比为0.5的等比数列,已知检测的质量在100.5-105.5之间的产品数为150,则质量在115.5-120.5的长方形高度为(  )
A.$\frac{1}{12}$B.$\frac{1}{30}$C.$\frac{1}{6}$D.$\frac{1}{60}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.三角形三个顶点是A(4,0),B(6,7),C(0,3).
(1)求BC边所在的直线的方程;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.锥体中,平行于底面的两个平面把锥体的体积三等分,这时高被分成三段的长自上而下的比为(  )
A.1:$\root{3}{2}$:$\root{3}{3}$B.1:2:3C.1:($\sqrt{2}$-1):($\sqrt{3}$-$\sqrt{2}$)D.1:($\root{3}{2}$-1):($\root{3}{3}$-$\root{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读如图的程序框图,运行相应的程序,输出的结果为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,在等腰梯形PDCB中,PB∥DC,PB=3,DC=1,∠DPB=45°,DA⊥PB于点A,将△PAD沿AD折起,构成如图2所示的四棱锥P-ABCD,点M的棱PB上,且PM=$\frac{1}{2}$MB.
(1)求证:PD||平面MAC;
(2)若平面PAD⊥平面ABCD,求二面角M-AC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,输出S的值为(  )
A.-$\frac{31}{15}$B.-$\frac{7}{5}$C.-$\frac{31}{17}$D.-$\frac{21}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,PA切圆于A,PA=8,直线PCB交圆于C,B,连接AB,AC,且PC=4,AD⊥BC于D,∠ABC=α,∠ACB=β,则$\frac{sinα}{sinβ}$的值等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

同步练习册答案