精英家教网 > 高中数学 > 题目详情
9.检测600个某产品的质量(单位:g),得到的直方图中,前三组的长方形的高度成等差数列,后三组对应的长方形的高度成公比为0.5的等比数列,已知检测的质量在100.5-105.5之间的产品数为150,则质量在115.5-120.5的长方形高度为(  )
A.$\frac{1}{12}$B.$\frac{1}{30}$C.$\frac{1}{6}$D.$\frac{1}{60}$

分析 求出质量在100.5-105.5之间的频率,设出前三组长方形的高度成等差数列的公差为d,
利用频率和为1求出d的值,再求出115.5-120.5对应的长方形高.

解答 解:根据题意,质量在100.5-105.5之间的产品数为150,
频率为$\frac{150}{600}$=0.25;
前三组的长方形的高度成等差数列,设公差为d,
则根据频率和为1,得
(0.25-d)+0.25+(0.25+d)+$\frac{1}{2}$(0.25+d)+$\frac{1}{4}$(0.25+d)=1;
解得d=$\frac{1}{12}$;
所以质量在115.5-120.5的频率是
$\frac{1}{4}$×(0.25+$\frac{1}{12}$)=$\frac{1}{12}$,
对应小长方形的高为
$\frac{1}{12}$÷5=$\frac{1}{60}$.
故选:D.

点评 本题考查了频率分布直方图的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C的对边分别为a,b,c,且$\sqrt{3}bsinA=acosB$.
(Ⅰ)求B;
(Ⅱ)若$b=3,sinC=\sqrt{3}sinA$,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点$P(2\sqrt{3},3)$且倾斜角为30o的直线方程为(  )
A..$y+4\sqrt{3}=3x$B..$y=x-\sqrt{3}$C.$3y-3=\sqrt{3}x$D..$y-\sqrt{3}=\sqrt{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.${8^{-\frac{1}{3}}}+{log_3}$tan210°=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知z=(m-3)+(m+1)i在复平面内对应的点在第二象限,则实数m的取值范围是(  )
A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实x,y数满足$\left\{\begin{array}{l}{y≤lnx}\\{x-2y-3≤0}\\{y+1≥0}\end{array}\right.$,则$z=\frac{y+1}{x}$的取值范围为[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥A-BCDE中,CD⊥平面ABC,BE∥CD,AB=BC=CD,AB⊥BC,M为AD上一点,EM⊥平面ACD.
(Ⅰ)证明:EM∥平面ABC;
(Ⅱ)若CD=2,求四棱锥A-BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.微信是现代生活进行信息交流的重要工具,随机对使用微信的60人进行了统计,得到如下数据统计表,每天使用微信时间在两小时以上的人被定义为“微信达人”,不超过两小时的人被定义为“非微信达人”.已知“非微信达人”与“微信达人”人数比恰为3:2.
(Ⅰ)确定x,y,p,q的值,并补全频率分布直方图;
(Ⅱ)为进一步了解使用微信对自己的日常工作和生活是否有影响,从“非微信达人”和“微信达人”60人中用分层抽样的方法确定5人,若需从这5人中随机选取2人进行问卷调查,求选取的2人中恰有1人为“微信达人”的概率. 
使用微信时间
(单位:小时)
频数频率
(0,0.5]30.05
(0.5,1]xp
(1,1.5]90.15
(1.5,2]150.25
(2,2.5]180.30
(2.5,3]yq
合计601.00

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,则输出的s=(  )
A.-1008B.-1007C.1010D.1011

查看答案和解析>>

同步练习册答案