分析 (1)分类讨论,利用不等式f(x)+a≥0恒成立,即f(x)的最小值|a-2|≥-a求实数a的取值范围;
(2)利用柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2)=3,即可证明结论.
解答 解:(1)当a≥0时,f(x)+a≥0恒成立,
当a<0时,要保证f(x)≥-a恒成立,即f(x)的最小值|a-2|≥-a,解得a≥-1,∴0>a≥-1
综上所述,a≥-1.(5分)
(2)由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2)=3
所以-$\sqrt{3}$≤a+b+c≤$\sqrt{3}$
所以:a+b+c≤$\sqrt{3}$.(10分)
点评 本小题主要考查不等式的相关知识,考查柯西不等式,具体涉及到绝对值不等式及不等式证明等内容.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{3}$ | B. | -$\frac{3}{4}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{2}$ | C. | -2 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com