【题目】已知直线的方程为.
(1)当时,求直线与坐标轴围成的三角形的面积;
(2)证明:不论取何值,直线恒过第四象限.
(3)当时,求直线上的动点到定点,距离之和的最小值.
【答案】(1);(2)详见解析;(3).
【解析】
(1)将代入可得直线方程,分别求得与两个坐标轴的交点坐标,即可求得直线与坐标轴围成的三角形的面积;
(2)将直线方程变形,解方程组即可确定直线所过定点坐标,即可确定其恒过第四象限.
(3)将代入可得直线方程,根据两个点坐标可知两个点在直线同一侧,可先求得关于直线的对称点为的坐标,即可由两点间距离公式求得最短距离.
(1)当时,直线的方程为,
令,得;
令,得,
所以直线与坐标轴围成的三角形的面积为.
(2)证明:将直线的方程整理得,
由,得,
所以直线恒过点,
所以不论取何值,直线恒过第四象限.
(3)当时,直线的方程为,定点,在直线的同一侧,其中关于直线的对称点为,则,
所以动点到定点,距离之和为,
所以当,,三点共线时,最小,
此时.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线与曲线两交点所在直线的极坐标方程;
(2)若直线的极坐标方程为,直线与轴的交点为,与曲线相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x﹣1)(a>0,且a≠1).
(1)若f(x)在[2,9]上的最大值与最小值之差为3,求a的值;
(2)若a>1,求不等式f(2x)>0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,为左焦点,为上顶点,为右顶点,若,抛物线的顶点在坐标原点,焦点为.
(1)求的标准方程;
(2)是否存在过点的直线,与和交点分别是和,使得?如果存在,求出直线的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)阅读下列材料并填空:对于二元一次方程组,我们可以将、的系数和相应的常数项排成一个数表,求得的一次方程组的解,用数表可表示为.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:,从而得到该方程组的解集________;
(2)仿照(1)中数表的书写格式写出解方程组的过程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com