分析 根据函数奇偶性及题设中关于g(x)与f(x-1)关系式,转换成关于f(x)的关系式,进而寻求解决问题的突破口,从函数的周期性方面加以以考查:f(x)为周期函数即得.
解答 解:由g(x)=f(x-1),x∈R,得f(x)=g(x+1).
又f(-x)=f(x),g(-x)=-g(x),
故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=g(x-3)=f(x-4)
也即f(x+4)=f(x),x∈R.
∴f(x)为周期函数,其周期T=4.
∴f(2010)=f(4×502+2)=f(2)=2.
故答案为:2.
点评 本题考查了函数的奇偶性的应用.应灵活掌握和运用函数的奇偶性、周期性等性质.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 空集是任何集合的子集 | |
| B. | 集合{y|y=x2-1}与集合{(x,y)|y=x2-1}是同一个集合 | |
| C. | 自然数集N中最小的数是1 | |
| D. | 很小的实数可以构成集合 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com