精英家教网 > 高中数学 > 题目详情
20.已知一组数据3、4、5、s、t的平均数是4,中位数是m,对于任意实数s、t,从3、4、5、s、t、m这组数据中任取一个,取到数字4的概率的最大值为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 推导出s+t=8,当s=t=4时,则中位数m=4,由此能求出取到数字4的概率的最大值.

解答 解:∵平均数为4,∴s+t=4×5-3-4-5=8,
当s=t=4时,则中位数m=4,
则取到4的概率为:$\frac{4}{6}$=$\frac{2}{3}$;
当s≠t,即s≠4,t≠4时,m=4
则取到4的概率为:$\frac{2}{6}$=$\frac{1}{3}$.
∴取到数字4的概率的最大值为
取到数字4的概率的最大值为$\frac{2}{3}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意平均数、中位数的定义的定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知曲线C的参数方程为$\left\{\begin{array}{l}x=4+5cost\\ y=5+5sint\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ=2.
(1)将C测参数方程化为普通方程;
(2)直线l与曲线C交于A,B两点,求AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.
(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设点P的直角坐标为(1,1),直线l与曲线C的交点为A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示的程序框图表示求算式“2×3×5×9×17×33”之值,则判断框内不能填入(  )
A.k≤33B.k≤38C.k≤50D.k≤65

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完,现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是(  )
A.①i≤7?②s=s-$\frac{1}{i}$③i=i+1B.①i≤128?②s=s-$\frac{1}{i}$③i=2i
C.①i≤7?②s=s-$\frac{1}{2i}$③i=i+1D.①i≤128?②s=s-$\frac{1}{2i}$③i=2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可得100的所有正约数之和为(  )
A.217B.273C.455D.651

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,不等式f(x)+xf′(x)<0成立,若a=πf(π),b=(-2)f(-2),c=f(1),则a,b,c的大小关系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.集合A={x|-1<x<1},B={x|x<a}.
(1)若A∩B=∅,求a的取值范围;
(2)若A∪B={x|x<1},求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示算法,若输入的x的值为2017,则算法执行后的输出结果是(  )
A.2016B.2017C.2D.0

查看答案和解析>>

同步练习册答案