11£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tÊDzÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£®
£¨¢ñ£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèµãPµÄÖ±½Ç×ø±êΪ£¨1£¬1£©£¬Ö±ÏßlÓëÇúÏßCµÄ½»µãΪA£¬B£¬Çó|PA|•|PB|µÄÖµ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÖ±ÏߵIJÎÊý·½³Ì¼´¿ÉÇóµÃÆÕͨ·½³Ì£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÇóµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóµÃAºÍBµã×ø±ê£¬´úÈëÔ²µÄ·½³Ì£¬¼´¿É¸ù¾ÝΤ´ï¶¨Àí¼´¿ÉÇóµÃt1t2=-2£¬Ôò|PA|•|PB|=Ø­t1t2Ø­£®

½â´ð ½â£º£¨¢ñ£©Ö±ÏßlµÄÆÕͨ·½³ÌΪx-y=0£¬ÓɦÑ=4cos¦È£¬Ôò¦Ñ2=4¦Ñcos¦È£¬¼´x2+y2-4x=0£¬
¹ÊÇúÏßCµÄÖ±½Ç×ø±ê·½³Ìx2+y2-4x=0£¬
£¨¢ò£©ÓɵãA£¬B¶¼ÔÚÖ±ÏßlÉÏ£¬ÔòÉèËüÃǶÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬
ÔòµãA£¬BµÄ×ø±êΪA£¨1+$\frac{\sqrt{2}}{2}$t1£¬1+$\frac{\sqrt{2}}{2}$t1£©£¬B£¨1+$\frac{\sqrt{2}}{2}$t2£¬1+$\frac{\sqrt{2}}{2}$t2£©£¬
½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²·½³ÌΪx2+y2-4x=0£¬
ÕûÀíµÃt2-2=0£¬¢Ù
ÓÉt1£¬t2·Ö±ðÊÇ·½³Ì¢ÙµÄ½â£¬´Ó¶øt1t2=-2£¬
¹Ê|PA|•|PB|=Ø­t1t2Ø­=2£¬
|PA|•|PB|µÄÖµ2£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÈçͼÊÇijËã·¨µÄÁ÷³Ìͼ£¬ÔòÊä³öµÄTµÄֵΪ120£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ëæ×Å¡°È«Ãæ¶þº¢¡±Õþ²ßÍÆÐУ¬ÎÒÊн«Ó­À´ÉúÓý¸ß·å£®½ñÄêдºÒÁʼ£¬Èª³Ç¸÷Ò½Ôº²ú¿Æ¾ÍÒѾ­ÊÇһƬæµÖÁ½ñÈȶȲ»¼õ£®ÎÀÉú²¿ÃŽøÐе÷²éͳ¼ÆÆÚ¼ä·¢ÏÖ¸÷Ò½ÔºµÄÐÂÉú¶ùÖУ¬²»ÉÙ¶¼ÊÇ¡°¶þº¢¡±£»ÔÚÊеÚÒ»Ò½Ôº£¬¹²ÓÐ40¸öºï±¦±¦½µÉú£¬ÆäÖÐ10¸öÊÇ¡°¶þº¢¡±±¦±¦£»
£¨¢ñ£©´ÓÁ½¸öÒ½Ôºµ±Ç°³öÉúµÄËùÓᦱ¦Öа´·Ö²ã³éÑù·½·¨³éÈ¡7¸ö±¦±¦×ö½¡¿µ×Éѯ£¬
¢ÙÔÚÊеÚÒ»Ò½Ôº³öÉúµÄÒ»º¢±¦±¦ÖгéÈ¡¶àÉÙ¸ö£¿
¢ÚÈô´Ó7¸ö±¦±¦ÖгéÈ¡Á½¸ö±¦±¦½øÐÐÌå¼ì£¬ÇóÕâÁ½¸ö±¦±¦Ç¡³öÉú²»Í¬Ò½ÔºÇÒ¾ùÊô¡°¶þº¢¡±µÄ¸ÅÂÊ£»
£¨II£©¸ù¾ÝÒÔÉÏÊý¾Ý£¬ÄÜ·ñÓÐ85%µÄ°ÑÎÕÈÏΪһº¢»ò¶þº¢±¦±¦µÄ³öÉúÓëÒ½ÔºÓйأ¿
P£¨k¡ÝkÊУ©0.400.250.150.10
kÊÐ0.7081.3232.0722.706
K2=$\frac{{n£¨ad-bc{£©^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=2+2sin¦Á}\\{y=2cos¦Á}\end{array}\right.$£¨aÊDzÎÊý£©£¬ÏÖÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÔòÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Ð¡ÓÚ90¡ãµÄ½ÇÊÇÈñ½Ç
B£®¶Û½Ç±ØÊǵڶþÏóÏ޽ǣ¬µÚ¶þÏóÏ޽DZØÊǶ۽Ç
C£®µÚÈýÏóÏ޵ĽǴóÓÚµÚ¶þÏóÏ޵ĽÇ
D£®½Ç¦ÁÓë½Ç¦ÂµÄÖÕ±ßÏàͬ£¬½Ç¦ÁÓë½Ç¦Â¿ÉÄܲ»ÏàµÈ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬$\overrightarrow{AN}=\frac{1}{4}\overrightarrow{NC}$£¬PÊÇBNÉϵÄÒ»µã£¬Èô$\overrightarrow{AP}=m\overrightarrow{AB}+\frac{2}{11}\overrightarrow{AC}$£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{9}{11}$B£®$\frac{2}{11}$C£®$\frac{3}{11}$D£®$\frac{1}{11}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÈçͼËùʾ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖÏß»­³öµÄÊÇijÈýÀâ×¶ÃæÌåµÄÈýÊÓͼ£¬Ôò¸ÃÈýÀâ×¶µÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®2£¨1+2$\sqrt{2}$+$\sqrt{3}$£©B£®2£¨1+$\sqrt{2}$+$\sqrt{3}$£©C£®$4{+}2\sqrt{6}$D£®4£¨1+$\sqrt{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÒ»×éÊý¾Ý3¡¢4¡¢5¡¢s¡¢tµÄƽ¾ùÊýÊÇ4£¬ÖÐλÊýÊÇm£¬¶ÔÓÚÈÎÒâʵÊýs¡¢t£¬´Ó3¡¢4¡¢5¡¢s¡¢t¡¢mÕâ×éÊý¾ÝÖÐÈÎȡһ¸ö£¬È¡µ½Êý×Ö4µÄ¸ÅÂʵÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{3}$C£®$\frac{1}{2}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èçͼ£¬ÔÚбÈýÀâÖùÖÐABC-A1B1C1ÖУ¬¡ÏBAC=90¡ã£¬BC1¡ÍAC£¬µãPΪAC1ÉϵÄÒ»¸ö¶¯µã£¬ÔòµãPÔÚµ×ÃæABCÉϵÄÉäÓ°H±ØÔÚ£¨¡¡¡¡£©
A£®Ö±ÏßABÉÏB£®Ö±ÏßBCÉÏC£®Ö±ÏßACÉÏD£®¡÷ABCÄÚ²¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸