精英家教网 > 高中数学 > 题目详情
5.已知复数$z=\frac{i}{i+1}$,那么复数z对应的点位于复平面内的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用复数代数形式的乘除运算化简复数z,求出复数z在复平面内对应的点的坐标,则答案可求.

解答 解:$z=\frac{i}{i+1}$=$\frac{i(1-i)}{(1+i)(1-i)}=\frac{1+i}{2}=\frac{1}{2}+\frac{1}{2}i$,
则复数z在复平面内对应的点的坐标为:($\frac{1}{2}$,$\frac{1}{2}$),位于第一象限.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.从某病毒爆发的疫区返回本市若干人,为了迅速甄别是否有人感染病毒,对这些人抽血,并将血样分成4组,每组血样混合在一起进行化验.
(Ⅰ)若这些人中有1人感染了病毒.
①求恰好化验2次时,能够查出含有病毒血样组的概率;
②设确定出含有病毒血样组的化验次数为X,求E(X).
(Ⅱ)如果这些人中有2人携带病毒,设确定出全部含有病毒血样组的次数Y的均值E(Y),请指出(Ⅰ)②中E(X)与E(Y)的大小关系.(只写结论,不需说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C的对边分别为a,b,c,满足b2-(a-c)2=(2-$\sqrt{3}$)ac
(Ⅰ)求角B的大小;
(Ⅱ)若BC边上的中线AD的长为3,cos∠ADC=-$\frac{1}{4}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量,它们的夹角为$\frac{2π}{3}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面向量$\overrightarrow a,\overrightarrow b$为单位向量,$|\overrightarrow a+\overrightarrow b|=1$,则向量$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数),倾斜角a=$\frac{π}{6}$的直线l经过点P(1,2).
(1)写出圆C的标准方程和直线l的参数方程;
(2)设直线l与圆C相交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某人从银行贷款a万元,分五期等额还清,经过一期的时间后第一次还款,期利率为r.
(1)按复利(本期的利息计入下期的本金生息)计算,每期须还多少万元?
(2)按单利(本期的利息不计入下期的本金生息)计算,每期须还多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC中,边a,b,c的对角分别为A,B,C,且$a=\sqrt{6}$,$c=\sqrt{2}$,$A=\frac{2π}{3}$.
(Ⅰ)求B,C及△ABC的面积;
(Ⅱ)已知函数f(x)=sinBsinπx-cosBcosπx,把函数y=f(x)的图象向左平移$\frac{1}{2}$个单位得函数y=g(x)的图象,求函数y=g(x)(x∈[0,2])上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在正方体ABCD-A1B1C1D1中,P是A1B1的中点,Q是AB的中点,求异面直线A1Q与DP所成角的余弦值.

查看答案和解析>>

同步练习册答案