精英家教网 > 高中数学 > 题目详情
4.中国古代数学名著《算法统宗》中,许多数学问题都是以诗歌的形式呈现,其中一首诗可改编如下:“甲乙丙丁戊,酒钱欠千文,甲兄告乙弟,三百我还与,转差十几文,各人出怎取?”意为:五兄弟,酒钱欠千文,甲还三百,甲乙丙丁戊还钱数依次成等差数列,在这个问题中丁该还150文钱.

分析 依题意甲、乙、丙、丁、戊还钱数组成以300为首项,d为公差的等差数列,利用条件求出d,则答案可求.

解答 解:依题意甲、乙、丙、丁、戊还钱数组成以300为首项,d为公差的等差数列,
又300×5+$\frac{5×4}{2}d$=1000,∴d=50,
则丁还钱数300-150=150.
故答案为150.

点评 本题考查等差数列的通项公式,考查学生利用数学知识解决实际问题,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=|2x+1|.
(1)解不等式:f(x)≥x+3;
(2)若不等式f(x)-2|x-1|≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={-2,-1,0,1,2},集合B={x|x2≤1},A∩B=(  )
A.{-2,-1,0,1}B.{-1,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l的方程为y=x+2,点P是抛物线y2=4x上到直线l距离最小的点,点A是抛物线上异于点P的点,直线AP与直线l交于点Q,过点Q与x轴平行的直线与抛物线y2=4x交于点B.
(Ⅰ)求点P的坐标;
(Ⅱ)证明直线AB恒过定点,并求这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=x+yi(x,y∈R)满足$|{\overline z}|≤1$,则y≥x-1的概率为(  )
A.$\frac{3}{4}-\frac{1}{2π}$B.$\frac{1}{4}-\frac{1}{2π}$C.$\frac{3}{4}+\frac{1}{2π}$D.$\frac{1}{4}+\frac{1}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图在棱锥P-ABCD中,ABCD为矩形,PD⊥面ABCD,PB=2,PB与面PCD成45°角,PB与面ABD成30°角.
(1)在PB上是否存在一点E,使PC⊥面ADE,若存在确定E点位置,若不存在,请说明理由;
(2)当E为PB中点时,求二面角P-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.住在狗熊岭的7只动物,它们分别是熊大,熊二,吉吉,毛毛,蹦蹦,萝卜头,图图.为了更好的保护森林,它们要选出2只动物作为组长,则熊大,熊二至少一个被选为组长的概率为(  )
A.$\frac{11}{42}$B.$\frac{1}{2}$C.$\frac{11}{21}$D.$\frac{10}{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在直角坐标系xOy中,设集合Ω={(x,y)|0≤x≤2,0≤y≤1},在区域Ω内任取一点P(x,y),则满足x+y≥1的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD与
平面ABCD所成的角依次是$\frac{π}{4}$和$arctan\frac{1}{2}$,AP=2,E、F依次是PB、PC的中点;
(1)求异面直线EC与PD所成角的大小;(结果用反三角函数值表示)
(2)求三棱锥P-AFD的体积.

查看答案和解析>>

同步练习册答案