分析 先由三角函数恒等变换化简函数解析式,由五点法作函数y=Asin(ωx+φ)的图象,根据正弦函数的图象和性质即可求得振幅,周期,最值及单调区间.
解答 解:(1)y=sin$\frac{x}{2}$-cos$\frac{x}{2}$=$\sqrt{2}$sin($\frac{x}{2}-\frac{π}{4}$),
根据题意列出表格得:
| x | $\frac{π}{2}$ | $\frac{3π}{2}$ | $\frac{5π}{2}$ | $\frac{7π}{2}$ | $\frac{9π}{2}$ |
| $\frac{x}{2}-\frac{π}{4}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| $\sqrt{2}$sin($\frac{x}{2}-\frac{π}{4}$) | 0 | $\sqrt{2}$ | 0 | -$\sqrt{2}$ | 0 |
点评 本题主要考查了五点法作函数y=Asin(ωx+φ)的图象,由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的图象与性质,属于基本知识的考查.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | $\sqrt{66}$ | C. | 8 | D. | $\sqrt{88}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com