精英家教网 > 高中数学 > 题目详情
9.已知数列{an}的首项a1=a(a≠0),前n项和Sn=$\frac{n+1}{2}$an,数列{bn}满足bn=|an-1|,若bn≥b3对任意正整数n恒成立,则实数a的取值范围是(-∞,0)∪$[\frac{1}{2},+∞)$.

分析 a1=a≠0,Sn=$\frac{n+1}{2}$an,当n≥2时,an=Sn-Sn-1,化为$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$.利用“累乘求积”可得an=na.利用bn=|an-1|=|na-1|,bn≥b3对任意正整数n恒成立,可得|na-1|≥|3a-1|,化简整理解出即可.

解答 解:∵a1=a≠0,Sn=$\frac{n+1}{2}$an
∴当n≥2时,an=Sn-Sn-1=$\frac{n+1}{2}{a}_{n}$-$\frac{n}{2}{a}_{n-1}$,
化为$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n}{n-1}$$•\frac{n-1}{n-2}$•…•$\frac{2}{1}$×a=na.
∴bn=|an-1|=|na-1|,
∵bn≥b3对任意正整数n恒成立,
∴|na-1|≥|3a-1|,
化为a$(a-\frac{2}{n+3})$≥0,a≠0.
∴a<0或a$≥\frac{2}{n+3}$,
∴a<0或$a≥\frac{1}{2}$.
∴a的取值范围是:(-∞,0)∪$[\frac{1}{2},+∞)$.
故答案为:(-∞,0)∪$[\frac{1}{2},+∞)$.

点评 本题考查了递推式的应用、绝对值的应用、一元二次不等式的解法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列说法中,正确的个数是(  )
①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;
②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;
③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;
④两条相交直线,其中一条与一个平面平行,则另一条一定与这个平面平行.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列-1,4,-7,…,(-1)n(3n-2),…的前100项和是150.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A={x|x>4或x<0},B{x|ax-1>0}.
(1)若A∪B=A,求a的取值范围;
(2)若a=3,求(∁RA)∪(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设集合A={3,4,6},试写出A的所有子集,并指出其中的真子集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-tx+1,g(x)=$\frac{sinx+2cosx+1}{2sinx+cosx+3}$.
(1)求函数y=f(sinx)的最小值a;
(2)求函数g(x)的最小值;
(3)在(2)的条件下,若存在实数x,使得不等式f(sinx)≤a成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.满足A∪B={0,2}的集合A与B的组数为(  )
A.2B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,已知a4+b4+c4=2c2(a2+b2),则∠C=(  )
A.30°B.60°C.45°或135°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知实数a≠0,函数f(x)=a(x-2)2+2lnx.
(1)当a=1时,讨论函数f(x)的单调性;
(2)?x∈[2,+∞)时,f(x)≥x+4a-$\frac{1}{4a}$恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案