精英家教网 > 高中数学 > 题目详情
已知n∈N*,设函数fn(x)=n-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R.
(1)求函数y=f2(x)-bx(b∈R)的单调区间;
(2)是否存在整数t,对于任意n∈N*,关于x的方程fn(x)=n-1在区间[t,t+1]上有唯一实数解,若存在,求t的值;若不存在,说明理由.
考点:利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:(1)y=f2(x)-bx,求导数y′,按△≤0,△>0两种情况讨论,△≤0时y′≤0,可知函数在R上的单调性;当△>0时解不等式y′>0,y′<0即得函数的单调区间;
(2)先求n=1时方程fn(x)=0的根,得区间[1,2],理由如下:n=1时求出方程的根,易判断;当n≥2时,求出fn′(x),讨论可得x=-1,0时f′n(x)<0,x≠-1,0时,利用等比数列求和公式可化简f′n(x),此时也可判断f′n(x)<0,从而可得fn(x)在(-∞,+∞)上单调递减.而fn(1)0,根据零点存在定理及函数单调性知,方程fn(x)=0在[1,2]上有唯一实数解,综述可得结论;
解答: 解:(1)∵f(x)=2-x+
x2
2
-
x3
3
,y=f2(x)-bx,
∴y=2-x+
x2
2
-
x3
3
-bx,
∴y′=-x2+x-b-1=-(x2-x+b+1)
方程x2-x+b+1=0的判别式△=1-4(b+1)=-3-4b
b≥-
3
4
,△≤0,y′≤0
故函数y=f2(x)-bx在R上单调递减
b<-
3
4
时,方程x2-x+b+1=0的两个实根为x1=
1-
-3-4b
2
x2=
1+
-3-4b
2

则x∈(-∞,-1)时,y'<0;x∈(x1,x2)时,y'>0,x∈(x2,+∞)时,y'<0
故函数y=f2(x)-bx的单调递减区间为(-∞,x1)、(x2,+∞)
单调递增区间为(x1,x2).
(2)存在t=1,对于任意n∈N*,关于x的方程fn(x)=0在区间[t,t+1]上有唯一实数解,理由如下:
当n=1时,f1(x)=1-x,令f1(x)=1-x=0,解得x=1,
所以关于x的方程f1(x)=0有唯一实数解x=1;
当n≥2时,由fn(x)=n-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R.
得fn′(x)=-1+x-x2+…+x2n-3-x2n-2
若x=-1,则f′n(x)=f′n(-1)=-(2n-1)<0,
若x=0,则f′n(x)=-1<0,
若x≠-1且x≠0时,则f′n(x)=-
x2n-1+1
x+1

当x<-1时,x+1<0,x2n-1+1<0,f′n(x)<0,
当x>-1时,x+1>0,x2n-1+1>0,f′n(x)<0,
所以f′n(x)<0,故fn(x)在(-∞,+∞)上单调递减.
gn(1)=(1-1)+(
1
2
-
1
3
)+(
1
4
-
1
5
)+…+(
1
2n-2
-
1
2n-1
)>0

gn(2)=(1-2)+(
22
2
-
23
3
)+(
24
4
-
25
5
)+…+(
22n-2
2n-2
-
22n-1
2n-1
)

=-1+22(
1
2
-
2
3
)+24(
1
4
-
2
5
)+…+22n-2(
1
2n-2
-
2
2n-1
)

=-1-
1
2×3
×22-
3
4×5
×24-…-
2n-3
(2n-2)(2n-1)
<0

∴方程gn(x)=0在[1,2]上有唯一实数解
当x∈(-∞,1)时,gn(x)>gn(1)>0;当x∈(2,+∞)时,gn(x)<gn(2)<0
综上所述,对于任意n∈N*,关于x的方程gn(x)=0在区间[1,2]上有唯一实数解,所以t=1.
点评:本小题主要考查三次函数、一元二次不等式、一元二次方程、函数的零点、数列求和等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括、推理论证、运算求解、创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:存在x∈R,使关于x的不等式x2+2x-m≤0成立;命题q:关于x的方程(4-m)•3x=9x+4有解;若命题p与q有且只有一个为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+2sin2x-1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[-
12
π
6
]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(2m2-3m-2)+(m2-3m+2)i(其中i为虚数单位)
(1)当复数z是纯虚数时,求实数m的值;
(2)若复数z对应的点在第三象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数集A={a1,a2,…,an}(0≤a1<a2<…<an,n≥2,n∈N*)具有性质P:?i,j(1≤i≤j≤n),ai+aj与aj-ai两数中至少有一个属于A.
(1)分别判断数集{1,2,3,4}是否具有性质P,并说明理由;
(2)证明:a1=0;
(3)证明:当n=5时,a1,a2,a3,a4,a5成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx+2
3
cosx,(x∈R)
①求函数f(x)的最大值和最小值;
②求f(x)的单调递区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有一块正方形区域ABCD,现在要划出一个直角三角形AEF区域进行绿化,满足:EF=1米,设角AEF=θ,θ∈[
π
6
π
3
],边界AE,AF,EF的费用为每米1万元,区域内的费用为每平方米4万元.
(1)求总费用y关于θ的函数.
(2)求最小的总费用和对应θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4cosxsin(x+
π
6
)-1.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC的内角A、B、C所对的边分别为a、b、c,且f(C)=1,若c=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列五个函数:
①y=sinx;
②y=logax(a>0,a≠1)
③y=x2
④y=2x+1
⑤y=-ax-2009(a>0,a≠1)
其中满足性质:“对(0,1)中任意的x1和x2,f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]恒成立”的函数是
 
.(填上正确的序号).

查看答案和解析>>

同步练习册答案