精英家教网 > 高中数学 > 题目详情
4.已知A={a,b,2},B={2a,b2,2},且满足A=B,求a,b的值.

分析 分a=2a,b=b2与a=b2,b=2a讨论,注意集合中元素的互异性即可.

解答 解:∵{a,b,2}={2a,b2,2},
∴若a=2a,b=b2
解得,a=0,b=0或b=1;
若a=0,b=0,则与元素的互异性相矛盾;
若a=0,b=1,则A=B={0,1,2},成立;
若a=b2,b=2a,
则b=0或b=$\frac{1}{2}$,
当b=0时,a=0,不成立;
当b=$\frac{1}{2}$时,a=$\frac{1}{4}$,成立;
综上所述,a=0,b=1或a=$\frac{1}{4}$,b=$\frac{1}{2}$.

点评 本题考查了学生的化简运算能力及分类讨论的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,过左焦点F1的直线与椭圆C相交于A,B两点,弦AB的中点坐标为(-$\frac{4}{7}$,$\frac{3}{7}$)
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C长轴的左、右两端点分别为D,E,点P为椭圆上异于D,E的动点,直线l:x=-4与直线PD,PE分别交于M,N两点,试问△F1MN的外接圆是否恒过x轴上不同于点F1的定点?若经过,求出定点坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某职业学校要从6名男同学,4名女同学中任选3人参加计算机动漫创作比赛,其中女同学甲恰被选中的概率是0.3(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2).
(1)若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,求$\overrightarrow{OP}$的坐标.
(2)若$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),且点P在函数y=x+1的图象上,试求m-n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=$\sqrt{9-{x}^{2}}$的图象是(  )
A.一条射线B.一条圆C.两条射线D.半圆弧

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=f(x)是定义在(0,+∞)上的增函数,对于任意的x>0,y>0,都有f(xy)=f(x)+f(y),且满足f(2)=1.
(1)求$f(4),f(\frac{1}{2})$的值;
(2)求满足f(2x)-f(x-3)>2的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=aexx-2aex-$\frac{1}{2}$x2+x.
(1)求函数f(x)在(2,f(2))处切线方程;
(2)讨论函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线f(x)=x3+x在(1,f(1))处的切线方程为4x-y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设A是由一些实数构成的集合,若a∈A,则$\frac{1}{1-a}$∈A,且1∉A
(1)若3∈A,求A;
(2)证明:若a∈A,则1-$\frac{1}{a}$∈A;
(3)A能否只有一个元素,若能,求出集合A,若不能,说明理由.

查看答案和解析>>

同步练习册答案