精英家教网 > 高中数学 > 题目详情
9.求导:y=$\frac{4}{{e}^{x}+1}$.

分析 根据导数的法则进行求导即可.

解答 解:函数的导数f′(x)=$\frac{-4({e}^{x}+1)}{({e}^{x}+1)^{2}}$=$-\frac{4}{{e}^{x}+1}$

点评 本题主要考查函数的导数的计算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设定义在R上的奇函数f(x)满足f(x)=x2-4(x>0),则f(x-2)>0的解集为(  )
A.(-4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(-∞,0)∪(4,+∞)D.(-4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某零件的三视图,则该零件的表面积为(  )
A.37πB.46πC.50πD.54π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.东西向的公路旁有一仓库A,A处存放有40根电线杆(如图).现打算从A的东面1000米的B处开始,自西向东每隔50米竖立一根电线杆.仓库只有一辆汽车,每次只能运送4根电线杆,全部运完后返回A处.设an(1≤n≤10,n∈N*)表示汽车第n次运送电线杆(一个来回)所行的路程.
(1)求数列{an}的通项an(1≤n≤10,n∈N*);
(2)当汽车运完40根电线杆后的总行程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sinx,g(x)=ex•f′(x),其中e为自然对数的底数.
(I)求曲线y=g(x)在点(0,g(0))处的切线方程;
(Ⅱ)若对任意x∈[-$\frac{π}{2}$,0],不等式g(x)≥x•f(x)+m恒成立,求实数m的取值范围;
(Ⅲ)试探究当x∈[-$\frac{π}{2}$,$\frac{π}{2}$]时,方程g(x)=x•f(x)的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知F为抛物线C:y2=6x的焦点,A,B是C上的两点,线段AB的中点为M(2,2),求△ABF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以曲线C:y=x2(x≥0)上某一点A为切点作一切线l,使之与曲线C以及x轴所围成的图形的面积为$\frac{2}{3}$,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率依次成等差数列,第2小组的频数为15,则抽取的学生人数为60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,过抛物线y2=2px(p>0)焦点F的直线交抛物线于A,B两点,O为坐标原点,C为抛物线准线与x轴的交点,且∠CFA=135°,则tan∠ACB=2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案