精英家教网 > 高中数学 > 题目详情
13.若正三棱柱(底面为正三角形,且侧棱与底面垂直的三棱柱)的三视图如图所示,该三棱柱的表面积是(  )
A.$\sqrt{3}$B.6+2$\sqrt{3}$C.6+$\sqrt{3}$D.$\frac{9\sqrt{3}}{2}$

分析 根据正三棱柱的三视图,得出三棱柱的高已经底面三角形的高,求出底面三角形的面积与侧面积即可.

解答 解:根据几何体的三视图,得;
该几何体是底面为正三角形,高为1的正三棱柱;
且底面三角形的高是$\sqrt{3}$;
所以底面三角形的边长是a=$\frac{\sqrt{3}}{si{n60}^{°}}$=2,
所以,该三棱柱的表面积为
S侧面积+S底面积=3×2×1+2×$\frac{1}{2}$×2×$\sqrt{3}$=6+2$\sqrt{3}$.
故选:B.

点评 本题考查了利用几何体的三视图求表面积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若数列{an}满足a1a2a3…an=n2+3n+2,在数列{an}的通项公式为an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=4x3-12x2+a在[-2,2]上的最大值为3,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:${∫}_{2}^{3}$($\sqrt{x}$+$\frac{1}{\sqrt{x}}$)2dx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.甲、乙两人射击,击中靶子的概率分别为0.85,0.8,若两人同时射击,则他们都脱靶的概率为0.03.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为(  )
A.$\frac{19}{20}$B.$\frac{19}{400}$C.$\frac{1}{20}$D.$\frac{95}{99}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知θ∈(π,$\frac{3}{2}$π),且sin$\frac{θ}{2}$=$\frac{4}{5}$,求$\frac{sinθ}{1+cosθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=a(sinB+cosB).
(1)求角A的大小;
(2)若边a=$\sqrt{2}$,求$\sqrt{2}$b-c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.关于函数f(x)=4sin(2x+$\frac{π}{3}$)(x∈R)有如下说法:
①由f(x1)=f(x2)=0可得,x1-x2是π的整数倍;
②表达式可改写为f(x)=4cos(2x-$\frac{π}{6}$);
③函数的图象关于点(-$\frac{π}{6}$,0)对称;
④函数的图象关于直线x=-$\frac{π}{6}$对称;
⑤函数在区间[-$\frac{5π}{12}$,$\frac{π}{12}$]上是减函数;
⑥函数为奇函数.其中你认为所有正确的说法的序号是②③.

查看答案和解析>>

同步练习册答案