精英家教网 > 高中数学 > 题目详情
2.蒙特卡洛方法的思想如下:当所求解的问题是某种随机事件=出现的概率时,通过某种“试验”方法,以这种事件出现的频率估计这一随机事件的概率,并将其作为问题的解.现为了估计右图所示的阴影部分面积的大小,使用蒙特卡洛方法的思想,向面积为16的矩形OABC内投掷800个点,其中恰有180个点落在阴影部分内,则可估计阴影部分的面积为(  )
A.3.6B.4C.12.4D.无法确定

分析 由向面积为16的矩形OABC内投掷800个点,其中恰有180个点落在阴影部分内,可得$\frac{180}{800}=\frac{{S}_{阴}}{16}$,即可估计阴影部分的面积.

解答 解:∵向面积为16的矩形OABC内投掷800个点,其中恰有180个点落在阴影部分内,
∴$\frac{180}{800}=\frac{{S}_{阴}}{16}$,
∴S=3.6.
故选:A.

点评 本题考查模拟方法估计概率,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5
(1)求a0-a1+a2-a3+a4-a5的值;
(2)求a1+2a2+3a3+4a4+5a5的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义运算a?b=$\frac{a+b-|a-b|}{2}$,则当a=3+log${\;}_{\frac{1}{4}}$x,b=log2x时,函数f(x)=a?b的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知正数a,b满足ab≥a+b+8则a+b的最小值为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上横坐标为3的点,且P到抛物线焦点F的距离等于4.
(1)求抛物线的方程;
(2)过抛物线的焦点F作互相垂直的两条直线l1,l2,l1与抛物线交于A、B两点,l2与抛物线交于C、D两点,M、N分别是线段AB、CD的中点,求△FMN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知某圆锥体的底面半径r=3,沿圆锥体的母线把侧面展开后得到一个圆心角为$\frac{2}{3}π$的扇形,则该圆锥体的表面积是36π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.正方体ABCD-A′B′C′D′中,AB′与A′C′所在直线的夹角为(  )
A.30°B.60°C.90°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知在三棱锥P-ABC中,AP=AB=AC=1,BC=PB=PC=$\sqrt{2}$,顶点都在一个球面上,则该球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知三个函数:①f(x)=x3,②f(x)=tanx,③f(x)=xsinx,其图象能将圆O:x2+y2=1的面积等分的函数的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案