精英家教网 > 高中数学 > 题目详情
17.某几何体的三视图如图所示(网络中每个小正方形的边长为1),若这个几何体的顶点都在球O的表面上,则这个球的表面积是(  )
A.20πB.4$\sqrt{5}$πC.$\frac{49π}{16}$D.$\frac{49π}{4}$

分析 由三视图画出直观图,有题意求得外接球的直径D,球O的表面积是4π×($\sqrt{5}$)2=20π.

解答 解:由三视图得原直观图如图,原几何体为三棱锥A-BCD,满足AD⊥底面BCD,底面BDC为等腰直角三角形,
则该几何体的外接球即为以DA、DB、DC为棱的长方体的外接球,外接球的直径D满足D2=DA2+DB2+DC2=4+8+8=20,
∴外接球O的半径为$\frac{1}{2}$D=$\sqrt{5}$,
∴球O的表面积是4π×($\sqrt{5}$)2=20π.
故选:A.

点评 本题考查三视图的应用,四面体外接球的求法,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知复数z的实部和虚部相等,且z(2+i)=3-bi(b∈R),则|z|=(  )
A.3$\sqrt{2}$B.2$\sqrt{2}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知(ax+1)5的展开式中各项系数和为243,则二项式${({\frac{3x}{a}-\frac{1}{{\root{3}{x}}}})^5}$的展开式中含x项的系数为-$\frac{45}{2}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数$f(x)=ln(1-\frac{1}{x+3})$的定义域为{x|x<-3或x>-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i是虚数单位,设1+ai=$\frac{2+bi}{i}$(a、b为实数),则a+bi在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Acos(ωx-$\frac{π}{3}$)(A>0,ω>0)相邻两条对称轴相距$\frac{π}{2}$,且f(0)=1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设α、β∈(0,$\frac{π}{4}$),f(α-$\frac{π}{3}$)=$\frac{10}{13}$,f(β+$\frac{π}{6}$)=$\frac{6}{5}$,求tan(2α-2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是半径分别为1,2,3的三个同心圆,现随机向最大圆内抛一粒豆子,则豆子落入图中阴影部分的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx-mx2+(1-2m)x+1.
(1)当m=1时,求函数f(x)的单调区间与极值;
(2)若m∈Z,关于x的不等式f(x)≤0恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x、y满足x2+y2-2x+4y-20=0,则x2+y2的最小值是(  )
A.$\sqrt{5}$-5B.5-$\sqrt{5}$C.30-10$\sqrt{5}$D.无法确定

查看答案和解析>>

同步练习册答案