精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)的定义域为[a,b],其中a<0<b,且|a|>b,求函数g(x)=f(x)+f(-x)的定义域.

分析 根据复合函数定义域之间的关系进行求解.

解答 解:∵函数f(x)的定义域为[a,b],
∴要使函数g(x)有意义,
则$\left\{\begin{array}{l}{a≤x≤b}\\{a≤-x≤b}\end{array}\right.$,即$\left\{\begin{array}{l}{a≤x≤b}\\{-b≤x≤-a}\end{array}\right.$,
∵a<0<b,且|a|>b,
∴-a>b,a<-b,
解得-b≤x≤b,
即函数g(x)的定义域为[-b,b].

点评 本题主要考查函数定义域的求解,根据复合函数定义域之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知a,b都是不等于0的常数,变量θ满足不等式组$\left\{\begin{array}{l}{asinθ+bcosθ≥0}\\{acosθ-bsinθ≥0}\end{array}\right.$,试求sinθ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知y=$\frac{{x}^{2}+x+1}{k{x}^{2}+kx+1}$的定义域为R,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设随机变量ξ服从二项分布ξ~B(n,p),则$\frac{(D(ξ))^{2}}{(E(ξ))^{2}}$等于(1-p)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,已知三边之比a:b:c=2:3:4,求tanA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}为等比数列,且a2,$\frac{1}{2}$a3,2a1成等差数列,则公比q=2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|x2+ax-6a2≤0,x∈R},B={x||x-2|<a,x∈R},当B?A时,求实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知全集U=R,集合A={x|-3≤x≤4},B={x|a-1<x<a+2,a∈R},且∁U(∁UA∪∁UB)=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.判断下列命题的真假,并说明理由.
(1)若ab=0,则a=0且b=0.
(2)3≥2
(3)?x∈R,x2+1>2x
(4)?x∈C,x2+4=0.

查看答案和解析>>

同步练习册答案