精英家教网 > 高中数学 > 题目详情
19.程序框图如图所示,当A=$\frac{24}{25}$时,输出的k的值为(  )
A.23B.24C.25D.26

分析 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量k的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:由已知中的程序框图可知:该程序的功能是计算S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{k(k+1)}$=$\frac{k}{k+1}$的值,
∵A=$\frac{24}{25}$,退出循环的条件为S≥A,
当k=24时,$\frac{k}{k+1}$=$\frac{24}{25}$满足条件,
故输出k=24,
故选:B

点评 本题考查的知识点是程序框图,分析出程序的功能是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin3x,x∈R,且f($\frac{5}{12}$π)=$\frac{\sqrt{2}}{2}$.
(1)求A的值;
(2)若f(θ)-f(-θ)=$\frac{3}{2}$,θ∈(0,$\frac{π}{2}$),求f($\frac{3π}{4}$-θ)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设O为△ABC所在平面上一点,则下列说法中正确的有①③④(填上正确命题的序号)
①若$\overrightarrow{OA}•\overrightarrow{OB}=\overrightarrow{OB}•\overrightarrow{OC}=\overrightarrow{OC}•\overrightarrow{OA}$,则O为△ABC的垂心;
②若$|\overrightarrow{OA}{|}^{2}+|\overrightarrow{BC}{|}^{2}$=$|\overrightarrow{OB}{|}^{2}+|\overrightarrow{CA}{|}^{2}$=$\overrightarrow{|OC}{|}^{2}+|\overrightarrow{AB}{|}^{2}$,则点O是△ABC的内心;
③若O在△ABC内部,且3$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,则$\frac{{S}_{△ABC}}{{S}_{△OBC}}$=$\frac{5}{3}$;
④若O在△ABC内部,且$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}$=$\overrightarrow{0}$,则S△ABO:S△BCO:S△ACO=3:1;2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)为奇函数且f(3x+1)的周期为3,f(1)=-1,则f(2015)=(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\vec a,\vec b$满足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$,则向量$\vec a$与$\vec b$夹角的余弦值为-$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在直角坐标系xOy中,曲线C1的参数方程是$\left\{\begin{array}{l}{x=t-\frac{1}{t}}\\{y=t+\frac{1}{t}}\end{array}\right.$,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρsin(θ+$\frac{π}{3}$)=1,则两曲线交点间的距离是$4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若一个几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{32}{3}$B.$\frac{64}{3}$C.$\frac{80}{3}$D.$\frac{160}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=log${\;}_{\frac{1}{2}}$(sin2xcos$\frac{π}{4}$-cos2xsin$\frac{π}{4}$)的单调递减区间是(  )
A.(kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$),k∈ZB.(kπ+$\frac{π}{8}$,kπ+$\frac{3π}{8}$),k∈Z
C.(kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$),k∈ZD.(kπ+$\frac{3π}{8}$,kπ+$\frac{5π}{8}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数列{an}满足:a1=2,a2=3,an+2=3an+1-2an(n∈N*
(1)记dn=an+1-an,求证数列{dn}是等比数列.
(2)求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案