精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\frac{1}{3}$x3+ax+b(a,b∈R)在x=2处取得极小值-$\frac{4}{3}$.
(Ⅰ)求f(x);
(Ⅱ)若$\frac{1}{3}$x3+ax+b≤m2+m+$\frac{10}{3}$对x∈[-4,0]恒成立,求m的取值范围.

分析 (1)先求导,再根据在x=2处取得极小值$-\frac{4}{3}$,得到$\left\{\begin{array}{l}{f^/}(2)=0\\ f(2)=-\frac{4}{3}\end{array}\right.$,解得即可,
(2)先根据导数求出函数f(x)的最大值,再解不等式即可.

解答 解:(Ⅰ)f′(x)=x2+a,
∴$\left\{\begin{array}{l}{f^/}(2)=0\\ f(2)=-\frac{4}{3}\end{array}\right.$,
∴$\left\{\begin{array}{l}a=-4\\ b=4\end{array}\right.$,
∴$f(x)=\frac{1}{3}{x^3}-4x+4$.
(Ⅱ)f′(x)=x2+a,令有x=±2.
当x∈[-4,0]时,f(x)在[-4,-2]上递增,在[-2,0]上递减,
故f(x)在[-4,0]上最大值$f(-2)=\frac{28}{3}$,
依题意,${m^2}+m+\frac{10}{3}≥\frac{28}{3}$,
即m2+m+6≥0,
解得m>2或m<-3,
∴{m|m>2或m<-3}.

点评 本题考查了导数和函数的极值的和最值的关系以及恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.(Ⅰ)设$M=\frac{{sin(-{{220}^0})}}{{cos(-{{310}^0})tan{{315}^0}}}$,求M的值;
(Ⅱ)记p=sinθ+cosθ,试用p表示sin4θ+cos4θ;
(Ⅲ)设$0<x<\frac{π}{2}$,$cos(x+\frac{π}{3})=\frac{1}{4}$,求sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在等比数列{an}中,a2=2,a5=16.
(1)求等比数列{an}的通项公式.
(2)在等差数列{bn}中,b1=a5,b8=a2,求等差数列{bn}的通项公式和前n项和Sn
(3)若c1=1,cn-cn-1=an(n∈N+,且n≥2),求数列{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数y=f(x)(x∈R)的导函数为f′(x),且f(x)=f(-x),f′(x)<f(x),则下列不等式成立的是(  )
A.f(0)<e-1f(1)<e2f(2)B.e-1f(1)<f(0)<e2f(2)C.e2f(2)<e-1f(1)<f(0)D.e2f(2)<f(0)<e-1f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}中a2=2,a5=$\frac{1}{4}$,则a1•a2+a2•a3+a3•a4+…+an•an+1等于(  )
A.16(1-4-nB.16(1-2nC.$\frac{32}{3}(1-{4^{-n}})$D.$\frac{32}{3}(1-{2^{-n}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用总长29.6米的钢条制作一个长方体容器的框架.如果所制容器底面一边的长比另一边的长多1米,那么高为多少时容器的容积最大?最大的容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{-x+3,x>1}\end{array}\right.$,那么f(f($\frac{5}{2}$))=(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知cosθ>0,tanθ<0,则$\sqrt{1-co{s}^{2}θ}$化简结果为(  )
A.±sinθB.sinθC.-sinθD.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=tan(2x+$\frac{π}{3}$)的递增区间是($\frac{kπ}{2}$-$\frac{5π}{12}$,$\frac{kπ}{2}$+$\frac{π}{12}$ ),k∈z.

查看答案和解析>>

同步练习册答案