精英家教网 > 高中数学 > 题目详情
18.设a与b为正数,并且满足a+b=1,a2+b2≥k,则k的最大值为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

分析 由基本不等式可得到1=a+b≥2$\sqrt{ab}$,a2+b2≥2ab.所以易求k的最大值.

解答 解:∵a与b为正数,并且满足a+b=1,
∴a2+b2≥$\frac{1}{2}$(a+b)2=$\frac{1}{2}$,
又∵a2+b2≥k,
∴k的最大值为$\frac{1}{2}$.
故选:C.

点评 本题考查基本不等式,易错点在于忽视等号成立的条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx-ax2+a(a∈R),其导函数为f′(x).
(Ⅰ)求函数g(x)=f′(x)+(2a-1)x的极值;
(Ⅱ)当x>1时,关于x的不等式f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知lg2=0.3010,则22016的整数位数是(  )位.
A.604B.605C.606D.607

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\frac{1}{3}{x^3}-4x+6$,
(1)求函数的极值;
(2)求函数在区间[-3,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校安排5个班到4个工厂进行社会实践,每个班取一个工厂,每个工厂至少安排一个班,不同的安排方法共有240 种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(2,1),则与$\overrightarrow{a}$垂直且长度为$\sqrt{5}$的向量$\overrightarrow b$的坐标为(1,-2)或(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=xex-ax2-x,a∈R.
(1)当a=$\frac{1}{2}$时,求函数f(x)的单调区间;
(2)若对x≥1时,恒有f(x)≥xex+ax2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对两个分类变量进行独立性检验的主要作用是(  )
A.判断模型的拟合效果
B.对两个变量进行相关分析
C.给出两个分类变量有关系的可靠程度
D.估计预报变量的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.规定 $C_x^m=\frac{x(x-1)…(x-m+1)}{m!}$,其中x∈R,m是正整数,这是组合数$C_n^m$(m、n是正整数,且m≤n)的一种推广.设x>0,则$\frac{C_x^3}{{{{(C_x^1)}^2}}}$最小值$\frac{\sqrt{2}}{3}$-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案