精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=sin(ωx+φ)-$\sqrt{3}$cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)图象的相邻两条对称轴为直线x=0与x=$\frac{π}{2}$,则f(x)的最小正周期为π,φ=-$\frac{π}{6}$.

分析 由对称性易得函数的周期,由对称性可得φ值.

解答 解:化简可得f(x)=sin(ωx+φ)-$\sqrt{3}$cos(ωx+φ)=2sin(ωx+φ-$\frac{π}{3}$),
∵直线x=0和x=$\frac{π}{2}$是函数f(x)图象的两条相邻的对称轴,
∴T=$\frac{2π}{ω}$=2($\frac{π}{2}$-0)=π,解得ω=2,
∴f(x)=2sin(2x+φ-$\frac{π}{3}$),
由对称性可知f(0)=±2,即φ-$\frac{π}{3}$=kπ+$\frac{π}{2}$,
解得φ=kπ+$\frac{5π}{6}$,由|φ|<$\frac{π}{2}$可知当k=-1时,φ=-$\frac{π}{6}$,
故答案是:π,-$\frac{π}{6}$.

点评 本题考查两角和与差的三角函数,涉及三角函数的对称性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设f(x)=ax2-bx+6lnx+15,其中a∈R,曲线y=f(x)在x=1和x=6处的切线都与直线$y=-\frac{1}{2}x+3$垂直.
(1)确定a,b的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an}满足:a1=$\frac{1}{2}$,a1,a2,a3-$\frac{1}{8}$成等差数列,公比q∈(0,1)
(1)求数列{an}的通项公式;
(2)设bn=2nan,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的前n项和Sn=$\frac{3}{2}$n2-$\frac{n}{2}$,bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,Tn为{bn}的前n项和,若对任意的n∈N,不等式λTn<n+12(-1)n恒成立,则实数λ的取值范围为(-∞,-44).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a∈R,“a>1”是“方程x2+2ax+y2+1=0的曲线是圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,1),$\overrightarrow c$=$\overrightarrow a$+k$\overrightarrow b$.若$\overrightarrow b$⊥$\overrightarrow c$,则实数k的值等于$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不共线的非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{b}$|=|-2$\overrightarrow{a}$|,则向量2$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}4\;|{\;{{log}_2}x\;}|\;\;\;\;\;0<x<2\\ \frac{1}{2}{x^2}-5x+12\;\;\;\;\;x≥2\end{array}$,若存在实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),若d>c>b>a>0,则abc(d-4)的取值范围是(  )
A.(8,9)B.(8,9]C.(12,32)D.[12,32)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在棱长为2的正方体中,
(1)求异面直线BD与B1C所成的角
(2)求证:平面ACB1⊥平面B1D1DB.

查看答案和解析>>

同步练习册答案