分析 由对称性易得函数的周期,由对称性可得φ值.
解答 解:化简可得f(x)=sin(ωx+φ)-$\sqrt{3}$cos(ωx+φ)=2sin(ωx+φ-$\frac{π}{3}$),
∵直线x=0和x=$\frac{π}{2}$是函数f(x)图象的两条相邻的对称轴,
∴T=$\frac{2π}{ω}$=2($\frac{π}{2}$-0)=π,解得ω=2,
∴f(x)=2sin(2x+φ-$\frac{π}{3}$),
由对称性可知f(0)=±2,即φ-$\frac{π}{3}$=kπ+$\frac{π}{2}$,
解得φ=kπ+$\frac{5π}{6}$,由|φ|<$\frac{π}{2}$可知当k=-1时,φ=-$\frac{π}{6}$,
故答案是:π,-$\frac{π}{6}$.
点评 本题考查两角和与差的三角函数,涉及三角函数的对称性,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (8,9) | B. | (8,9] | C. | (12,32) | D. | [12,32) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com