精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=mx3+3(m-1)x2-m2+1(m>0)的单调减区间是(0,4),则m=$\frac{1}{3}$.

分析 求函数的导数,得到f′(x)<0的解集为(0,4),转化为一元二次不等式进行求解即可.

解答 解:函数的导数为f′(x)=3mx2+6(m-1)x,
∵函数f(x)=mx3+3(m-1)x2-m2+1(m>0)的单调减区间是(0,4),
∴f′(x)=3mx2+6(m-1)x<0的解集为(0,4),
即x=0和x=4是方程3mx2+6(m-1)x=0的两个根,
则48m+24(m-1)=0,
即2m+m-1=0,
解得m=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$

点评 本题主要考查函数的单调性和导数之间的关系,求函数的导数,利用导数求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知f(x)=2sin(2x+$\frac{π}{6}$),若f(α)=$\frac{2}{3}$,α∈(0,$\frac{π}{8}$),求cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{\begin{array}{l}{x,x∈[0,2]}\\{\frac{4}{x},x∈(2,4]}\end{array}\right.$
(1)画出函数f(x)的大致图象;
(2)写出函数f(x)的最大值和单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别F1、F2,动直线l与椭圆相切于点P,作F1A,F2B垂直于直线l,垂足分别为A,B,记λ=$\frac{B{F}_{2}}{A{F}_{1}}$.当P为左顶点时,λ=9,且λ=1时,四边形AF1F2B的周长为22.
(1)试确定椭圆的标准方程;
(2)求证:BF2•AF1为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}满足a1=8,a2=0,a3=-7,且数列{an+1-an}为等差数列,则{an}的最小项为(  )
A.-30B.-29C.-28D.-27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.盒子里有大小一样的15个球,其中10个红球,5个白球,甲、乙两人依次摸一个球,求甲得红球,乙得白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,过四棱柱ABCD-A1B1C1D1形木块上底面内的一点P和下底面的对角线BD将木块锯开,得到截面BDEF.
(1)请在木块的上表面作出过P的锯线EF,并说明理由;
(2)若该四棱柱的底面为菱形,四边形BB1D1D是矩形,试证明:平面BDEF⊥平面A1C1CA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知,点I是△ABC的内心,E,F分别在AB,AC上,且EF过点I,AE=AF,BE=4,CF=3,则EF的长为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a>b>0,那么下列不等式成立的是(  )
A.2b-2a>0B.b2-a2>0C.|b|>|a|D.2a>2b

查看答案和解析>>

同步练习册答案