精英家教网 > 高中数学 > 题目详情
13.盒子里有大小一样的15个球,其中10个红球,5个白球,甲、乙两人依次摸一个球,求甲得红球,乙得白球的概率.

分析 甲、乙两人依次摸一个球,有15×14=210种方法,甲得红球,乙得白球有10×5=50种方法,即可得出所求概率.

解答 解:甲、乙两人依次摸一个球,有15×14=210种方法,甲得红球,乙得白球有10×5=50种方法,
所以所求概率为$\frac{5}{21}$.

点评 本题以概率问题为载体,主要考查古典概型,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图,PA切圆O于点A,割线PBC经过圆心O,若PB=OB=1,OD平分∠AOC,交圆O于点D,连接PD交圆O于点E,则PE的长等于(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{3\sqrt{7}}}{7}$C.$\frac{{5\sqrt{7}}}{7}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,平行四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,H、M是AD、DC的中点,BF=$\frac{1}{3}$BC.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$来表示$\overrightarrow{AM}$,$\overrightarrow{HF}$;
(2)若|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,求$\overrightarrow{AM}$•$\overrightarrow{HF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知正项递增的等比数列{an}中,a1=1,2a3与$\frac{3}{2}$a5的等差中项为2a4,数列{bn}的前n项和为Sn满足Sn=$\frac{n{b}_{n}}{2}$,且b2=1.
(1)求数列{an},{bn}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}}$+$\frac{1}{{S}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=mx3+3(m-1)x2-m2+1(m>0)的单调减区间是(0,4),则m=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{({4}^{x}+1)}{({2}^{x}-\frac{4}{3})•{2}^{x}}$-a有且只有一个零点,则a的范围为(  )
A.a>1B.a>1或a=-3C.0<a<1或a=-3D.a>-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若$\frac{1}{tanα-1}$无意义,则α在[0,π]内的值是$\frac{π}{4}$或$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x+$\frac{1}{{e}^{x}}$.
(1)讨论函数f(x)的单调性,并求其最值;
(2)若对任意的x∈(0,+∞),有f(x)>ax2-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,阴影部分(包括边界)为平面区域D,若点P(x,y)在区域D内,则z=x+2y的最小值是-1;x,y满足的约束条件是$\left\{\begin{array}{l}2x-y+2≥0\\ x≤0\\ y≥0.\end{array}\right.$.

查看答案和解析>>

同步练习册答案