16£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðF1¡¢F2£¬¶¯Ö±ÏßlÓëÍÖÔ²ÏàÇÐÓÚµãP£¬×÷F1A£¬F2B´¹Ö±ÓÚÖ±Ïßl£¬´¹×ã·Ö±ðΪA£¬B£¬¼Ç¦Ë=$\frac{B{F}_{2}}{A{F}_{1}}$£®µ±PΪ×ó¶¥µãʱ£¬¦Ë=9£¬ÇÒ¦Ë=1ʱ£¬ËıßÐÎAF1F2BµÄÖܳ¤Îª22£®
£¨1£©ÊÔÈ·¶¨ÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÇóÖ¤£ºBF2•AF1Ϊ¶¨Öµ£®

·ÖÎö £¨1£©Í¨¹ýµ±PΪ×ó¶¥µãʱ¦Ë=9¼°PF2-PF1=2c£¬µÃ4a=5c£¬ÔÙͨ¹ý¦Ë=1ʱËıßÐÎAF1F2BµÄÖܳ¤Îª22£¬¿ÉÖªb+2c=11£¬¼ÆËã¼´¿É£»
£¨2£©ÉèÖ±ÏßlÓë×ø±êÖáµÄ½»µã·Ö±ðΪM£¨m£¬0£©£¬N£¨0£¬n£©£¬£¨m¡¢n£¾0£©£¬Í¨¹ýÖ±ÏßlµÄ·½³Ìnx+my-mn=0£¬¿ÉµÃBF2=$\frac{|4n-mn|}{\sqrt{{m}^{2}+{n}^{2}}}$£¬AF1=$\frac{4n+mn}{\sqrt{{m}^{2}+{n}^{2}}}$£¬ÔÙÀûÓÃÖ±ÏßlÓëÍÖÔ²ÏàÇУ¬¼´9m2+9n2+16n2-m2n2=0£¬¿ÉµÃBF2•AF1=9£®

½â´ð £¨1£©½â£ºµ±PΪ×ó¶¥µãʱ£¬¦Ë=9£¬¼´PF2=9PF1£¬
ÓÖ¡ßPF2-PF1=2c£¬¡àc=4PF1=4a-4c£¬¼´4a=5c£¬
µ±¦Ë=1ʱ£¬ËıßÐÎAF1F2BµÄÖܳ¤Îª22£¬
¼´2b+4c=22£¬¡àb+2c=11£¬
ÓÖ¡ßa2-b2=c2£¬¡àa=5£¬b=3£¬c=4£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$£»
£¨2£©Ö¤Ã÷£ºÓÉ£¨1£©ÖªF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬
ÉèÖ±ÏßlÓë×ø±êÖáµÄ½»µã·Ö±ðΪM£¨m£¬0£©£¬N£¨0£¬n£©£¬£¨m¡¢n£¾0£©£¬
ÔòÖ±ÏßlµÄ·½³ÌΪ£ºnx+my-mn=0£¬
¡àBF2=$\frac{|4n-mn|}{\sqrt{{m}^{2}+{n}^{2}}}$£¬AF1=$\frac{4n+mn}{\sqrt{{m}^{2}+{n}^{2}}}$£¬
ÁªÁ¢Ö±ÏßlÓëÍÖÔ²·½³Ì£¬ÏûÈ¥yµÃ£º$£¨9+\frac{25{n}^{2}}{{m}^{2}}£©{x}^{2}$-$\frac{50{n}^{2}}{m}x$+25n2-225=0£¬
¡ßÖ±ÏßlÓëÍÖÔ²ÏàÇУ¬¡à¡÷=$£¨\frac{50{n}^{2}}{m}£©^{2}$-$4¡Á£¨9+\frac{25{n}^{2}}{{m}^{2}}£©£¨25{n}^{2}-225£©$=0£¬
»¯¼ò£¬µÃ9m2-m2n2+25n2=0£¬¼´9m2+9n2+16n2-m2n2=0£¬
¡àBF2•AF1=$\frac{|4n-mn|}{\sqrt{{m}^{2}+{n}^{2}}}$•$\frac{4n+mn}{\sqrt{{m}^{2}+{n}^{2}}}$=$\frac{|16{n}^{2}-{m}^{2}{n}^{2}|}{{m}^{2}+{n}^{2}}$=9£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÔ²M£º£¨x-2£©2+y2=$\frac{1}{4}$ÉÏÒ»¶¯µãP£¬Å×ÎïÏßC£ºx2=yÉÏ´æÔÚÁ½¶¯µãA£¨x1£¬y1£©£¬B £¨x2£¬y2£©
£¨1£©ÈôM£¬A£¬BÈýµã¹²Ïߣ¬Çó$\frac{{x}_{1}•{x}_{2}}{{x}_{1}+{x}_{2}}$µÄÖµ
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m£¬ÒÑÖª|AB|=$\sqrt{£¨{k}^{2}+1£©£¨-8k-3£©}$£¨k£¼-$\frac{3}{8}$£©£¬ÇóµãPµ½Ö±ÏßABµÄ¾àÀëdµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªµ¥Î»ÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$-k$\overrightarrow{b}$|=$\sqrt{3}$|k$\overrightarrow{a}$+$\overrightarrow{b}$|£¬ÆäÖÐk£¾0£¬ÔòÏÂÁÐÓëÏòÁ¿$\overrightarrow{b}$´¹Ö±µÄÏòÁ¿¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®6$\overrightarrow{a}$+2$\overrightarrow{b}$B£®$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C£®$\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow{b}$D£®$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬Æ½ÐÐËıßÐÎABCDÖУ¬$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AD}$=$\overrightarrow{b}$£¬H¡¢MÊÇAD¡¢DCµÄÖе㣬BF=$\frac{1}{3}$BC£®
£¨1£©ÓÃ$\overrightarrow{a}$£¬$\overrightarrow{b}$À´±íʾ$\overrightarrow{AM}$£¬$\overrightarrow{HF}$£»
£¨2£©Èô|$\overrightarrow{a}$|=3£¬|$\overrightarrow{b}$|=4£¬$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{2¦Ð}{3}$£¬Çó$\overrightarrow{AM}$•$\overrightarrow{HF}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=x3+ax+b£¨a£¬b¡ÊR£©£®
£¨1£©Èôf£¨x£©µÄͼÏóÔÚ-2¡Üx¡Ü2²¿·ÖÔÚxÖáµÄÉÏ·½£¬ÇÒÔڵ㣨2£¬f£¨2£©£©´¦µÄÇÐÏßÓëÖ±Ïß9x-y+5=0ƽÐУ¬ÊÔÇóbµÄȡֵ·¶Î§£»
£¨2£©µ±x1£¬x2¡Ê[0£¬$\frac{\sqrt{3}}{3}$]£¬ÇÒx1¡Ùx2£¬²»µÈʽ|f£¨x1£©-f£¨x2£©|£¼|x1-x2|ºã³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÕýÏîµÝÔöµÄµÈ±ÈÊýÁÐ{an}ÖУ¬a1=1£¬2a3Óë$\frac{3}{2}$a5µÄµÈ²îÖÐÏîΪ2a4£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪSnÂú×ãSn=$\frac{n{b}_{n}}{2}$£¬ÇÒb2=1£®
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{$\frac{1}{{a}_{n}}$+$\frac{1}{{S}_{n+1}}$}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=mx3+3£¨m-1£©x2-m2+1£¨m£¾0£©µÄµ¥µ÷¼õÇø¼äÊÇ£¨0£¬4£©£¬Ôòm=$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èô$\frac{1}{tan¦Á-1}$ÎÞÒâÒ壬Ôò¦ÁÔÚ[0£¬¦Ð]ÄÚµÄÖµÊÇ$\frac{¦Ð}{4}$»ò$\frac{¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ä³³ÌÐò¿òͼÈçͼËùʾ£¬ÏÖÊäÈëÈçÏÂËĸöº¯Êý£¬Ôò¿ÉÒÔÊä³öµÄº¯ÊýÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=x2B£®f£¨x£©=sinxC£®f£¨x£©=exD£®f£¨x£©=$\frac{1}{x}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸