精英家教网 > 高中数学 > 题目详情
5.重庆巴蜀中学高三的某位学生的10次数学考试成绩的茎叶图如图所示,则该生数学成绩在(135,140)内的概率为(  )
A.0.3B.0.4C.0.5D.0.6

分析 观察茎叶图,发现成绩在(135,140)内的人数,利用古典概型公式可求.

解答 解:由题意,共有10个数学成绩,其中成绩在(135,140)内的人数,有136,136,138三个,由古典概型公式得
该生数学成绩在(135,140)内的概率为$\frac{3}{10}$=0.3;
故选A.

点评 本题考查了统计中的茎叶图的知识以及古典概型公式的运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知球的半径为R,球内接圆柱的底面半径为r,高为h,则r和h为何值时,内接圆柱的体积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设m、n分别是方程log2013x+x-9=0和2013x+x-9=0的根,则m+n=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知Sn为数列{an}的前n项和,Sn=nan-3n(n-1)(n∈N*),且a2=12.
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)求证:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$$<\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直三棱柱ABC-A1B1C1中,AC=1,BC=2,AC⊥BC,D,E,F分别为棱AA1,A1B1,AC的中点.
(Ⅰ)求证:EF∥平面BCC1B1
(Ⅱ)若异面直线AA1与EF所成角为30°时,求三棱锥C1-DCB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在如图所示的几何体中,四边形ABCD为平行四边形,∠ACD=90°,AB=1,AD=2,ABEF为正方形,平面ABEF⊥平面ABCD,P为DF的中点.AN⊥CF,垂足为N.
(1)求证:BF∥平面PAC;
(2)求证:AN⊥平面CDF;
(3)求三棱锥B-CEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交A、B两点,F为C的焦点,若|FA|=3|FB|,则k=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知不等式$\frac{x+2}{ax-1}$>0的解集为(-2,-1),则二项式(ax+$\frac{1}{{x}^{2}}$)6展开式的常数项是(  )
A.-15B.15C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足$\left\{\begin{array}{l}{x≥2}\\{y≤6}\\{4x-3y+4≤0}\end{array}\right.$,若不等式ax3y≤x4-y4恒成立,则实数a的取值范围是(-∞,-26$\frac{2}{3}$].

查看答案和解析>>

同步练习册答案