精英家教网 > 高中数学 > 题目详情
5.四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,AB=2,PA=$\frac{2\sqrt{3}}{3}$,E为BC中点,F在棱PD上,则当EF与平面PAD所成角最大时,点B到平面AEF的距离为$\frac{\sqrt{3}}{2}$.

分析 证明AE⊥平面PAD.当AF⊥PD时,线段AF长度最小,EF与平面PAD所成角最大,利用VC-AEF=VF-ADC,求出点B到平面AEF的距离.

解答 解:如图,∵PA⊥平面ABCD,∴PA⊥AE,
∵底面ABCD为菱形,∠ABC=60°,E为BC中点,
∴AE⊥BC,
∵BC∥AD,
∴AE⊥AD,
∵PA∩AE=A,
∴AE⊥平面PAD.
当AF⊥PD时,线段AF长度最小,EF与平面PAD所成角最大.
∵AB=2,∴AE=$\sqrt{3}$,
∵PA=$\frac{2\sqrt{3}}{3}$,
∴AF=1.
在Rt△ADF中,可得F到平面ACD的距离为$\frac{\sqrt{3}}{2}$,B到平面AEF的距离等于C到平面AEF的距离h,
∴VC-AEF=VF-ADC
∴$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}h$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×\frac{\sqrt{3}}{2}$,
∴h=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题考查线面垂直的证明,考查点到平面距离的计算,考查三棱锥体积的公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x2-x=0},集合B={y|-1<y<1},则A∩B=(  )
A.0B.C.{0}D.{∅}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义在R上的函数f(x)=Asin(ωx+φ)(x>0,A>0)的图象如图所示.
(1)求函数f(x)的解析式;
(2)写出函数f(x)的单调递增区间
(3)设不相等的实数,x1,x2∈(0,π),且f(x1)=f(x2)=-2,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若二次函数f(x)=-x2-2x+c的最大值为4.求:
(1)f(c)的值;
(2)抛物线在x轴上方对应的自变量x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知在数列{an}中,an=2n2-3n+5,则数列{an}是(  )
A.递增数列B.递减数列C.常数列D.摆动数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=kx,g(x)=2lnx+2e($\frac{1}{e}$≤x≤e2),若f(x)与g(x)的图象上分别存在点M,N,使得M,N关于直线y=e对称,则实数k的取值范围是(  )
A.[-$\frac{2}{e}$,-$\frac{4}{{e}^{2}}$]B.[-$\frac{2}{e}$,2e]C.[-$\frac{4}{{e}^{2}}$,2e]D.[$\frac{4}{{e}^{2}}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex-kx2,x∈R.
(1)设函数g(x)=f(x)(x2-bx+2),当k=0时,若函数g(x)有极值,求实数b的取值范围;
(2)若f(x)在区间(0,+∞)上单调递增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,AB是圆O的直径,点C在圆O上,矩形DCBE所在的平面垂直于圆O所在的平面,AB=4,BE=1.
(1)证明:平面ADE⊥平面ACD;
(2)当三棱锥C-ADE的体积最大时,求直线CE与平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线y2=4x,点A(1,0)B(-1,0),点M在抛物线上,则∠MBA的最大值是(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{3π}{4}$

查看答案和解析>>

同步练习册答案