精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=-f'(0)ex+2x,点P为曲线y=f(x)在点(0,f(0))处的切线l上的一点,点Q在曲线y=ex上,则|PQ|的最小值为$\sqrt{2}$.

分析 求出f(x)的导数,令x=0,可得切线l的斜率和切点,切线方程l,再求y=ex导数,由过Q的切线与切线l平行时,距离最短.求得切点Q的坐标,运用点到直线的距离公式,即可得到最小值.

解答 解:f(x)=-f'(0)ex+2x,
可得f′(x)=-f'(0)ex+2,
即有f′(0)=-f'(0)e0+2,
解得f′(0)=1,
则f(x)=-ex+2x,
f(0)=-e0+0=-1,
则切线l:y=x-1,
y=ex的导数为y′=ex
过Q的切线与切线l平行时,距离最短.
由ex=1,可得x=0,
即切点Q(0,1),
则Q到切线l的距离为$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,同时考查点到直线的距离公式运用,运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知F1、F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点,过点F1且垂直于x轴的直线交双曲线C于P、Q两点,若△F2PQ为正三角形,则双曲线C的离心率e的值为(  )
A.$\sqrt{3}$B.2C.3D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线过点P(11,1)且在两坐标轴上的截距相等,则这样的直线有(  )
A.1条B.2条C.3条D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax,a>0.
(1)记f(x)的极小值为g(a),求g(a)的最大值;
(2)若对任意实数x恒有f(x)≥0,求f(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sin(ωx+φ)(ω>0)的图象关于直线$x=\frac{π}{32}$对称且$f({-\frac{π}{32}})=0$,如果存在实数x0,使得对任意的x都有$f({x_0})≤f(x)≤f({{x_0}+\frac{π}{8}})$,则ω的最小值是(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设$a=ln3,b={log_2}\sqrt{3},c={log_3}\sqrt{2}$,则(  )
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=(1-cosx)sinx,则(  )
A.f(x)是奇函数B.f(x)是偶函数
C.f(x)既是奇函数也是偶函数D.f(x)既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,是奇函数,又在定义域内为减函数的是(  )
A.$y={({\frac{1}{2}})^x}$B.$y=\frac{2}{x}$C.y=-2x3D.$y={log_2}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列说法:
①集合A={x∈Z|x=2k-1,k∈Z}与集合B={x∈z|x=2k+3,k∈Z}是相等集合;
②若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
③函数y=$\frac{1}{{x}^{2}}$的单调减区间是(-∞,0)∪(0,+∞);
④不存在实数m,使f(x)=x2+mx+1为奇函数;
⑤若f(x+y)=f(x)f(y),且f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2016)}{f(2015)}$=2016.
其中正确说法的序号是(  )
A.①②③B.②③④C.①③⑤D.①④⑤

查看答案和解析>>

同步练习册答案