精英家教网 > 高中数学 > 题目详情
9.设x>-1,求函数y=x+$\frac{4}{x+1}$+6的最小值.

分析 由x>-1,可得x+1>0.变形为函数y=x+$\frac{4}{x+1}$+6=(x+1)+$\frac{4}{x+1}$+5,利用基本不等式的性质即可得出.

解答 解:∵x>-1,∴x+1>0.
∴函数y=x+$\frac{4}{x+1}$+6=(x+1)+$\frac{4}{x+1}$+5≥$2\sqrt{(x+1)•\frac{4}{x+1}}$+5=9,当且仅当x=1时取等号.
∴函数y=x+$\frac{4}{x+1}$+6的最小值为9.

点评 本题考查了变形利用基本不等式的性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)=ax2+bx+c(a∈N*),若不等式f(x)<2x的解集为(1,4),且方程f(x)=x有两个相等的实数根.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若不等式f(x)>mx在x∈(1,+∞)上恒成立,求实数m的取值范围;
(Ⅲ)解不等式f(x)>mx(m∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某地方政府为鼓励全民创业,拟对本地产值在50万元到500万元的新增小微企业进行奖励,奖励方案遵循以下原则:奖金y(单位:万元)随年产值x(单位:万元)的增加而增加,且奖金不低于7万元,同时奖金不超过年产值的15%.
(1)若某企业产值100万元,核定可得9万元奖金,试分析函数y=lgx+kx+5(k为常数)是否为符合政府要求的奖励函数模型,并说明原因(已知lg2≈0.3,lg5≈0.7);
(2)若采用函数f(x)=$\frac{15x-a}{x+8}$作为奖励函数模型,试确定最小的正整数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一个小型家具厂可以生产A型和B型两种型号的桌子,每种类型的桌子都要经过打磨、着色、上漆三道工序,A型桌子需要10min打磨,6min着色,6min上漆;B型桌子需要5min打磨,12min着色,9min上漆.已知家具市场上这两种类型的桌子供不应求,当天生产好的桌子当天就可以出售,半成品不可以出售,且A型的可以获得纯利润15元,B型的可以获得纯利润20元.已知这家一个小型家具厂的打磨、着色、上漆,上漆工人各有一名,每人每天至多工作8小时.假设你可以当这家小型家具厂的一天老板,一天的纯利润即为你的报酬,你怎样安排这一天的生产得到的报酬最大化?并求出最大报酬.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)的定义域为R,若存在常数m>0,使|f(x)|≤m|x|对一切实数x均成立,则称f(x)为F函数,给出下列函数:①f(x)=0;②f(x)=x2;③f(x)=$\frac{x}{{x}^{2}+x+1}$;④f(x)=$\sqrt{2}$(sinx+cosx),其中是F函数的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a1=1,an+1=an+3n-1,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若($\root{3}{x}$+$\frac{2}{x}$)n的展开式中第八项是含有$\root{3}{x}$的项.
(1)求n;
(2)求展开式中x7项的系数及二项式系数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在约束条件$\left\{\begin{array}{l}x+2y≤4\\ x-y≤1\\ x+2≥0\end{array}\right.$下,目标函数z=3x-2y+1取最大值时的最优解为(2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-2|x-a|(a∈R).
(Ⅰ)若函数f(x)为偶函数,求a的值;
(Ⅱ)当a>0时,若对任意的x∈[0,+∞),不等式f(x-1)≤2f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案