分析 本题考查阅读题意的能力,根据F函数的定义进行判定:对于①f(x)=0,显然对任意常数m>0,均成立;
对于②,f(x)=x2,|f(x)|<m|x|,显然不成立;
对于③,f(x)=$\frac{x}{{x}^{2}+x+1}$,|f(x)|=$\frac{1}{{x}^{2}+x+1}$|x|≤$\frac{4}{3}$|x|,
故对任意的m>$\frac{4}{3}$,都有|f(x)|<m|x|成立;从而可得到正确结论;
对于④,f(x)=2sin(x+$\frac{π}{4}$),x=0时,|f(x)|<m|x|不成立.
解答 解:对于①f(x)=0,显然对任意常数m>0,均成立,故f(x)为F函数;
对于②,|f(x)|<m|x|,显然不成立,故其不是F函数;
对于③,f(x)=$\frac{x}{{x}^{2}+x+1}$,|f(x)|=$\frac{1}{{x}^{2}+x+1}$|x|≤$\frac{4}{3}$|x|,
故对任意的m>$\frac{4}{3}$,都有|f(x)|<m|x|成立;故其是F函数;
对于④,f(x)=$\sqrt{2}$(sinx+cosx)=2sin(x+$\frac{π}{4}$),x=0时,|f(x)|<m|x|不成立.
由于x=0时,|f(x)|<m|x|不成立,故不是F函数.
故答案为:①③.
点评 本题的考点是函数恒成立问题,主要考查根据所给的新定义来验证函数是否满足定义中的规则,是函数知识的给定应用题,综合性较强,做题时要注意运用所深知识灵活变化进行证明,考查学生的阅读理解能力与分析问题解决问题的能力,
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{30}}{10}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{30}}{15}$ | D. | $\frac{\sqrt{15}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1008 | B. | 2015 | C. | -1008 | D. | -504 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com