分析 (1)根据公司要选择的函数模型所要满足的条件,逐一分析,即可得出结论;
(2)根据奖金y(单位:万元)随年产值x(单位:万元)的增加而增加,且奖金不低于7万元,同时奖金不超过年产值的15%,确定a的范围,即可确定最小的正整数a的值.
解答 解:(1)对于函数模型y=lgx+kx+5 ( k 为常数 ),
x=100时,y=9,代入解得k=$\frac{1}{50}$,
所以y=lgx+$\frac{x}{50}$+5.
当x∈[50,500]时,y=lgx+$\frac{x}{50}$+5是增函数,但x=50时,f(50)=lg50+6>7.5,即奖金不超过年产值的15%不成立,故该函数模型不符合要求;
(2)对于函数模型f(x)=$\frac{15x-a}{x+8}$=15-$\frac{120+a}{x+8}$
a为正整数,函数在[50,500]递增; f(x)min=f(50)≥7,解得a≤344;
要使f(x)≤0.15x对x∈[50,500]恒成立,即a≥-0.15x2+13.8x对x∈[50,500]恒成立,
所以a≥315.
综上所述,315≤a≤344,
所以满足条件的最小的正整数a的值为315.
点评 本题主要考查函数模型的选择,其实质是考查函数的基本性质,同时,确定函数关系实质就是将文字语言转化为数学符号语言--数学化,再用数学方法定量计算得出所要求的结果,关键是理解题意,将变量的实际意义符号化.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -3 | C. | -2$\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 2 | 3 | 4 | 5 | 6 |
| y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com