分析 画出y=f(x)与y=k的图象,运用韦达定理和对数的运算性质,计算即可得到所求范围.
解答
解:函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+3,x≤0}\\{|2-lnx|,x>0}\end{array}\right.$,的图象如下:
四个交点横坐标从小到大,依次记为a,b,c,d,
则a,b是x2+2x+k-3=0的两根,
由于x<0时,
-x2-2x+3=4-(x+1)2≤4,
判别式为4-4(k-3)=4(4-k)>0,
即有k<4,
∴a+b=-2,ab=k-3<1,
∴ab∈[0,1),
且lnc=2-k,lnd=2+k,
∴ln(cd)=4,∴cd=e4,
∴abcd∈[0,e4),
故答案为:[0,e4).
点评 本题考查函数的图象,分段函数,零点与方程的根之间的关系,综合性较强.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2015 | B. | 2016 | C. | 1024 | D. | 1008 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$或$\frac{2}{3}π$ | D. | $\frac{5}{6}π$或$\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com