分析 (1)由题意将递推公式:an+2=$\frac{3}{2}$an+1-$\frac{1}{2}$an(n∈N*)代入$\frac{{d}_{n+1}}{{d}_{n}}$,化简后由等比数列的定义可得{dn}是等比数列;
(2)由(1)和等比数列的通项公式求出dn,即可求出an+1-an,利用累加法和等比数列的前n项和公式求出数列{an}的通项公式.
解答 解:(1)∵an+2=$\frac{3}{2}$an+1-$\frac{1}{2}$an(n∈N*),且dn=an+1-an,
∴$\frac{{d}_{n+1}}{{d}_{n}}$=$\frac{{a}_{n+2}-{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$=$\frac{\frac{3}{2}{a}_{n+1}-\frac{1}{2}{a}_{n}-{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$=$\frac{1}{2}$,
又a1=1,a2=$\frac{3}{2}$,则d1=a2-a1=$\frac{3}{2}-1=\frac{1}{2}$,
∴数列{dn}是以$\frac{1}{2}$为首项、公比的等比数列;
(2)由(1)可得,dn=$\frac{1}{2}•\frac{1}{{2}^{n-1}}$=$\frac{1}{{2}^{n}}$,则an+1-an=$\frac{1}{{2}^{n}}$,
∴a2-a1=$\frac{1}{2}$,a3-a2=$\frac{1}{{2}^{2}}$,a4-a3=$\frac{1}{{2}^{3}}$,…,an-an-1=$\frac{1}{{2}^{n-1}}$,
以上(n-1)个式子相加得,
an-a1=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n-1}}$,
∴an=a1+1-$\frac{1}{{2}^{n-1}}$=2-$\frac{1}{{2}^{n-1}}$.
点评 本题考查数列的递推公式的化简,等比数列的定义、通项公式、前n项和公式,以及累加法求出数列的通项公式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (4,+∞) | B. | (-∞,4) | C. | (-3,0) | D. | (-∞,-3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com