精英家教网 > 高中数学 > 题目详情
13.设i是虚数单位,M={1,2,(a2-3a-1)+(a2-5a-6)i},N={1,2,3,4},M⊆N,则实数a=-1.

分析 根据M⊆N及集合M,N的元素便可得到集合M的元素中的复数的虚部为0,也就是a2-5a-6=0,从而可解出a,从而得出M,并验证是否满足M⊆N,这样便可确定实数a的值.

解答 解:∵M⊆N;
∴a2-5a-6=0;
解得a=-1,或6;
经验证a=6时不符合M⊆N;
∴a=-1.
故答案为:-1.

点评 考查子集的概念,知道一个复数要是实数只能虚部为0,注意求出a后不要忘了验证是否满足M⊆N.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.用反证法证明命题“自然数a,b,c,中恰有一个偶数”时,需假设(  )
A.a,b,c都是奇数B.a,b,c都是偶数
C.a,b,c都是奇数或至少有两个偶数D.a,b,c至少有两个偶数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.己知P1(2,-1)、P2(0,5)且点P在P1P2的延长线上,$|\overrightarrow{{P_1}P}|=2|\overrightarrow{P{P_2}}|$,则P点坐标为(  )
A.(-2,11)B.($\frac{4}{3}$,3)C.($\frac{2}{3}$,3)D.(2,-7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,E、F分别是三棱锥P-ABC的棱AP、BC的中点,PC=8,AB=6,EF=5,则异面直线AB与PC所成的角为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.下表是关于某设备的使用年限(年)和所需要的维修费用y(万元)的几组统计数据:
x23456
y2.23.85.56.57.0
y与x之间有较强线性相关性.
(1)求线性回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,
(2)试估计使用年限为10年时,维修费用多少万元?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.{an}为等差数列,a7=$\frac{1}{17}$,a17=$\frac{1}{7}$,则{an}的前119项的和为60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,a2=$\frac{3}{2}$,an+2=$\frac{3}{2}$an+1-$\frac{1}{2}$an(n∈N*).
(1)记dn=an+1-an,求证:{dn}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果f(α)=2tanα-$\frac{2si{n}^{2}\frac{α}{2}-1}{sin\frac{α}{2}cos\frac{α}{2}}$,那么f($\frac{π}{12}$)的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果(3x-$\frac{1}{\root{3}{{x}^{2}}}$)n的展开式中各项系数之和为8,则${∫}_{0}^{1}$xndx的值是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

同步练习册答案