精英家教网 > 高中数学 > 题目详情
2.如果f(α)=2tanα-$\frac{2si{n}^{2}\frac{α}{2}-1}{sin\frac{α}{2}cos\frac{α}{2}}$,那么f($\frac{π}{12}$)的值为8.

分析 由二倍角的余弦,正弦函数公式,同角三角函数关系式化简已知可得f(α)=$\frac{4}{sin2α}$,代入即可得解.

解答 解:∵f(α)=2tanα-$\frac{2si{n}^{2}\frac{α}{2}-1}{sin\frac{α}{2}cos\frac{α}{2}}$=2tanα-$\frac{(-cosα)}{\frac{1}{2}sinα}$=$\frac{2sinα}{cosα}+\frac{2cosα}{sinα}=\frac{4}{sin2α}$.
∴f($\frac{π}{12}$)=$\frac{4}{sin\frac{π}{6}}$=8.
故答案为:8.

点评 本题主要考查了二倍角的余弦,正弦函数公式,同角三角函数关系式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC
(Ⅰ)求证:a,b,c成等比数列;
(2)若cosB=$\frac{3}{4}$,$\overrightarrow{AB}•\overrightarrow{BC}$=-$\frac{3}{2}$,求a+c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设i是虚数单位,M={1,2,(a2-3a-1)+(a2-5a-6)i},N={1,2,3,4},M⊆N,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在体积一定的正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,记A1F与平面BCC1B1所成的角为θ,下列说法中正确的是①②④.
①点F的轨迹是一条线段;
②三棱锥F-AD1E的体积为定值;
③A1F与D1E不可能平行;
④A1F与CC1是异面直线;
⑤tanθ的最大值为3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一个小型家具厂可以生产A型和B型两种型号的桌子,每种类型的桌子都要经过打磨、着色、上漆三道工序,A型桌子需要10min打磨,6min着色,6min上漆;B型桌子需要5min打磨,12min着色,9min上漆.已知家具市场上这两种类型的桌子供不应求,当天生产好的桌子当天就可以出售,半成品不可以出售,且A型的可以获得纯利润15元,B型的可以获得纯利润20元.已知这家一个小型家具厂的打磨、着色、上漆,上漆工人各有一名,每人每天至多工作8小时.假设你可以当这家小型家具厂的一天老板,一天的纯利润即为你的报酬,你怎样安排这一天的生产得到的报酬最大化?并求出最大报酬.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=λ(x2-1)+x-a的图象对于任意λ∈R,与x轴恒有公共点,则实数a的取值范围为[1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a1=1,an+1=an+3n-1,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式x-$\frac{4}{x-1}$<1的解集是(  )
A.(-∞,-1)∪(3,+∞)B.(-1,1)∪(3,+∞)C.(-∞,-1)∪(1,3)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设集合M={x∈R|2x≥4},N={x∈R|log3x<1},则M∩N={x|2≤x<3},M∪(∁RN)={x|x≤0或x≥2}.

查看答案和解析>>

同步练习册答案