精英家教网 > 高中数学 > 题目详情
12.设集合M={x∈R|2x≥4},N={x∈R|log3x<1},则M∩N={x|2≤x<3},M∪(∁RN)={x|x≤0或x≥2}.

分析 集合M与N中不等式变形后,分别求出解集确定出M与N,找出两集合的交集,求出M与N补集的并集即可.

解答 解:由M中不等式变形得:2x≥4=22
解得:x≥2,即M={x|x≥2},
由N中不等式变形得:log3x<1=log33,
解得:0<x<3,即N={x|0<x<3},∁RN={x≤0或x≥3},
则M∩N={x|2≤x<3},M∪(∁RN)={x|x≤0或x≥2},
故答案为:{x|2≤x<3};{x|x≤0或x≥2}

点评 此题考查了交集及其运算,交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如果f(α)=2tanα-$\frac{2si{n}^{2}\frac{α}{2}-1}{sin\frac{α}{2}cos\frac{α}{2}}$,那么f($\frac{π}{12}$)的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果(3x-$\frac{1}{\root{3}{{x}^{2}}}$)n的展开式中各项系数之和为8,则${∫}_{0}^{1}$xndx的值是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C的对边分别为a,b,c,若角A,B,C依次成等差数列,且a=$\sqrt{2}$,b=$\sqrt{3}$,则S△ABC=$\frac{{3+\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“x≤0”是“x2+x≤0”的  (  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{|x+1|,x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则${x_3}-\frac{1}{{({x_1}+{x_2})x_3^2{x_4}}}$的取值范围是[$\sqrt{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.由抛物线y2=4x与直线y=x-3围成的平面图形的面积为(  )
A.$\frac{64}{3}$B.$\frac{32}{3}$C.64D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$的值的一个流程图,其中判断框内应填入的条件是“i≥11”或“i>10”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)5名同学排成一排,其中甲、乙两人不相邻的排法有多少种?
(2)“渐降数”是指每一位数字比其左边的数字小的正整数(如632),那么比666小的三位渐降数共有多少个?

查看答案和解析>>

同步练习册答案