精英家教网 > 高中数学 > 题目详情
已知(1+mx)n(m∈R,n∈N*)的展开式的二项式系数之和为32,且展开式中含x3项的系数为80.
(1)求m,n的值;
(2)求(1+mx)n(1-x)6展开式中含x2项的系数.
考点:二项式系数的性质,二项式定理的应用
专题:二项式定理
分析:(1)根据2n=32求得n的值.在通项Tr+1=
C
r
5
mrxr(r=0,1,…,5)
,令x的幂指数r=3,可得展开式中含x3项的系数为
C
3
5
m3=80
,从而求得m的值.
(2)本题即求(1+2x)5(1-x)6展开式中含x2项的系数,利用通项公式展开化简可得展开式中含x2项的系数.
解答: 解:(1)由题意,2n=32,则n=5.
由通项Tr+1=
C
r
5
mrxr(r=0,1,…,5)

令r=3,可得展开式中含x3项的系数为
C
3
5
m3=80
,所以m=2.
(2)即求(1+2x)5(1-x)6展开式中含x2项的系数,
(1+2x)5(1-x)6=[
C
0
5
+
C
1
5
(2x)1+
C
2
5
(2x)2+…](
C
0
6
-
C
1
6
x+
C
2
6
x2+…)

=(1+10x+40x2+…)(1-6x+15x2+…),
所以展开式中含x2项的系数为1×15+10×(-6)+40×1=-5.
点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于非零向量
a
b
,下列命题中正确的是(  )
A、
a
b
a
b
上的投影为|
a
|
B、
a
b
=0⇒
a
=0或
b
=0
C、
a
b
a
b
=(
a
b
2
D、
a
c
=
b
c
a
=
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足a1=1,an+2an=39(n∈N*),那么数列{an}的前50项和S50的最小值为(  )
A、637
B、559
C、481+25
39
D、492+24
78

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a3+a7=15,则a2+a8=(  )
A、10B、15C、12D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在平行四边形ABCD中,AE:EB=1:2,若S△AEF=6cm2,则S△ADF为(  )
A、54cm2
B、24cm2
C、18cm2
D、12cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形ABCD的每条边和对角线的长都等于a,点M、N分别是边AB、CD的中点,求证:
(1)MN为AB和CD的公垂线;     
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式ax2-6x+a2<0的解集是(1,m),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离心率为
1
2
的椭圆C1的左、右焦点分别为F1,F2,抛物线C2:y2=4x的焦点为F2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)若过焦点F2的直线l与抛物线C2交于A,B两点,问在椭圆C1上且在直线l外是否存在一点M,使直线MA,MF2,MB的斜率依次成等差数列,若存在,请求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°,设
AB
=
a
AD
=
b
AA1
=
c

(1)求AC1的长;
(2)求BD1与AC所成角的余弦值.

查看答案和解析>>

同步练习册答案