【题目】已知椭圆
:
的离心率为
,且与抛物线
交于
,
两点,
(
为坐标原点)的面积为
.
![]()
(1)求椭圆
的方程;
(2)如图,点
为椭圆上一动点(非长轴端点)
,
为左、右焦点,
的延长线与椭圆交于
点,
的延长线与椭圆交于
点,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为
(t为参数),曲线C的极坐标方程为ρ=4sin(θ+
).
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C交于M,N两点,求△MON的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于给定的正整数k,若正项数列
满足
,对任意的正整数n(
)总成立,则称数列
是“
数列”.
(1)证明:若
是正项等比数列,则
是“
数列”;
(2)已知正项数列
既是“
数列”,又是“
数列”,
①证明:
是等比数列;
②若
,
,且存在
,使得
为数列
中的项,求q的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的直角顶点
在
轴上,点
为斜边
的中点,且
平行于
轴.
(Ⅰ)求点
的轨迹方程;
(Ⅱ)设点
的轨迹为曲线
,直线
与
的另一个交点为
.以
为直径的圆交
轴于
即此圆的圆心为
,
求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古人云:“腹有诗书气自华.”为响应全民阅读,建设书香中国,校园读书活动的热潮正在兴起.某校为统计学生一周课外读书的时间,从全校学生中随机抽取
名学生进行问卷调査,统计了他们一周课外读书时间(单位:
)的数据如下:
一周课外读书时间/ |
|
|
|
|
|
|
|
|
| 合计 |
频数 | 4 | 6 | 10 | 12 | 14 | 24 |
| 46 | 34 |
|
频率 | 0.02 | 0.03 | 0.05 | 0.06 | 0.07 | 0.12 | 0.25 |
| 0.17 | 1 |
(1)根据表格中提供的数据,求
,
,
的值并估算一周课外读书时间的中位数.
(2)如果读书时间按
,
,
分组,用分层抽样的方法从
名学生中抽取20人.
①求每层应抽取的人数;
②若从
,
中抽出的学生中再随机选取2人,求这2人不在同一层的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有9只球,其中标有数字1,2,3,4的小球各2个,标数字5的小球有1个.从袋中任取3个小球,每个小球被取出的可能性都相等,用
表示取出的3个小球上的最大数字.
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量
的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com