精英家教网 > 高中数学 > 题目详情
9.已知A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,且点O到平面ABC的距离为2,则球O的表面积为20π.

分析 证明BC为△ABC外接圆的直径,根据点O到平面ABC的距离为2,由勾股定理可得球O的半径为$\sqrt{1+4}$=$\sqrt{5}$,即可求出球O的表面积.

解答 解:∵AB=1,BC=2,∠ABC=60°,
∴由余弦定理可得AC=$\sqrt{1+4-2×1×2×\frac{1}{2}}$=$\sqrt{3}$,
∴AB2+AC2=BC2
∴AB⊥AC,
∴BC为△ABC外接圆的直径,
∵点O到平面ABC的距离为2,
∴由勾股定理可得球O的半径为$\sqrt{1+4}$=$\sqrt{5}$,
∴球O的表面积为4π•5=20π.
故答案为:20π.

点评 本题考查球的表面积计算问题,考查球的截面性质,考查运算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.从长度为2,3,4,5的四条线段中随机地选取三条线段,则所选取的三条线段恰能构成三角形的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若(2x-3)6=a0+a1(x-1)+a2(x-1)2+…+a6(x-1)6,则a1+a3+a5=-364.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设A={x|x=n,n∈Z},B={x|x=$\frac{n}{2}$,n∈Z},C={x|x=n+$\frac{1}{2}$,n∈Z},那么正确的(  )
A.A=BB.B=A∪CC.B=A∩CD.B⊆C

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式x2+3y2≥ay(x+y)对任意x,y∈R+恒成立,则实数a的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,E为AD上一点,F为PC上一点,四边形BCDE为矩形,∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(1)若$\overrightarrow{PF}$=λ$\overrightarrow{PC}$(λ∈R),且PA∥平面BEF,求λ的值;
(2)求证:PE⊥平面ABCD;
(3)求直线PB与平面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在三棱锥S-ABC中,侧棱SC⊥平面ABC,SA⊥BC,SC=1,AC=2,BC=3,则此三棱锥的外接球的表面积为(  )
A.14πB.12πC.10πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{ax+b}{{1+{x^2}}}$是定义在(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{2}{5}$,则不等式f(t-1)+f(t)<0的解集为(  )
A.(0,1)B.(0,$\frac{1}{2}$]C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}$|=ad-bc,如果(x+y)+(x+3)i=$|{\begin{array}{l}{3x+2y}&i\\{-y}&1\end{array}}|$,x,y∈R,求z=y-xi.

查看答案和解析>>

同步练习册答案