精英家教网 > 高中数学 > 题目详情
12.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示.
销售单价/元6789101112
日均销售量/桶480440400360320280240
请根据以上数据分析,这个经营部定价在11.5元/桶才能获得最大利润.

分析 通过表格可知销售单价每增加1元、日均销售量减少40桶,进而列出表达式,利用二次函数的简单性质即得结论.

解答 解:设每桶水的价格为(6+x)元,公司日利润y元,
则:y=(6+x-5)(480-40x)-200,
=-40x2+440x+280(0<x<13),
∵-40<0,
∴当x=-$\frac{b}{2a}$=5.5时函数y有最大值,
因此,每桶水的价格为11.5元,公司日利润最大,
故答案为:11.5.

点评 本题考查函数的最值及其几何意义,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,它的体积为(  )
A.57πB.58πC.59πD.60π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若圆C的方程为(x-3)2+(y-1)2=9与直线斜率为1的直线m交于A,B两点,且以AB为直径的圆过原点,
(1)求直线m的方程;
(2)若过点T(1,3)的直线l与圆C交于P,Q两点,线段PQ的中点为M,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,其上下顶点分别为C1,C2,点A(1,0),B(3,2),AC1⊥AC2
(1)求椭圆E的方程及离心率;
(2)点P的坐标为(m,n)(m≠3),过点A任意作直线l与椭圆E相交于点M,N两点,设直线MB,BP,NB的斜率依次成等差数列,探究m,n之间是否满足某种数量关系,若是,请给出m,n的关系式,并证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知动圆过定点A(3,0),且与圆(x+3)2+y2=64相切,则动圆的圆心P的轨迹是(  )
A.B.椭圆C.抛物线D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设P是曲线2x2-y2=1上的一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程为8x2-4y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.运行如图所示的程序框图,输出的S=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三角形ABC中,AB=x,BC=1,O是AC的中点,∠BOC=45°,记点C到AB的距离为h(x).
(1)求h(x)的表达式,并注明x的取值范围;
(2)求h(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正数组成的等比数列{an},若a2•a19=100,那么a8+a13的最小值为(  )
A.20B.25C.50D.不存在

查看答案和解析>>

同步练习册答案