分析 (Ⅰ)首先根据Sn=n2+4n+1求出a1的值,然后利用an=Sn-Sn-1求出当n>2时,an的表达式,然后验证a1的值,最后写出an的通项公式.
(Ⅱ)根据错位想加法即可求出前n项和.
解答 解:(Ⅰ)∵Sn=n2+4n+1,a1=S1=12+4+1=6,
∴an=Sn-Sn-1=n2+4n+1-[(n-1)2+4(n-1)+1]=2n+3(n>1),
∵当n=1时,a1=5≠6,
∴an=$\left\{\begin{array}{l}{6,n=1}\\{2n+3,n≥2,n∈N}\end{array}\right.$,
(Ⅱ)当n=1时,b1=21-1•(a1-1)=5,
当n≥2时,bn=2n-1•(an-1)=2n-1•(2n+2)=(n+1)2n,
则数列{bn}的前n项和Tn=5+3×22+4×23+5×24+…+(n+1)•2n,
2Tn=10+3×23+4×24+5×25+…+n•2n+(n+1)•2n+1,
两式相减得-Tn=-5+3×22+23+24+…+2n-(n+1)•2n+1=1+2+22+23+24+…+2n-(n+1)•2n+1=$\frac{1×(1-{2}^{n+1})}{1-2}$-(n+1)•2n+1=-1-n•2n+1,
即Tn=1+n•2n+1,
综上所述Tn=$\left\{\begin{array}{l}{5,n=1}\\{1+n•{2}^{n+1},n≥2,n∈N}\end{array}\right.$
点评 本题主要考查数列通项公式的求解和数列求和,要求熟练掌握错位相减法.考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(x)的最小正周期为2π | B. | f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]内单调递增 | ||
| C. | f(x)的图象关于(-$\frac{π}{2}$,0)对称 | D. | f(x)的图象关于x=$\frac{π}{8}$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com